已知直線x-2y=-k+6和直線x+3y=4k+1,若它們的交點(diǎn)在第四象限.
(1)求k的取值范圍;
(2)若k為非負(fù)整數(shù),求出函數(shù)x-2y=-k+6所有解析式.
分析:根據(jù)已知直線x-2y=-k+6和直線x+3y=4k+1,解出交點(diǎn)坐標(biāo),根據(jù)交點(diǎn)在第四象限即可解出k的范圍,再根據(jù)k為非負(fù)整數(shù)確定k的值后即可得出答案.
解答:解:(1)由題可得:
x-2y=-k+6
x+3y=4k+1
,解之得:
x=k+4
y=k-1

∴兩直線的交點(diǎn)坐標(biāo)為(k+4,k-1),又∵交點(diǎn)在第四象限,
k+4>0
k-1<0
,解之得:-4<k<1;
(2)由于k為非負(fù)整數(shù)且-4<k<1,∴k=0,
此函數(shù)的解析式為:x-2y=6.
點(diǎn)評(píng):本題考查了一次函數(shù)與一元一次不等式及解二元一次方程,屬于基礎(chǔ)題,關(guān)鍵是先求出交點(diǎn)確定k的坐標(biāo),再根據(jù)已知條件求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線x-2y=-k+6和x+3y=4k+1,若它們的交點(diǎn)在第四象限內(nèi).
(1)求k的取值范圍;
(2)若k為非負(fù)整數(shù),點(diǎn)A的坐標(biāo)(2,0),點(diǎn)P在直線x-2y=-k+6上,求使△PAO為等腰三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線x-2y=-k+6和x+3y=4k+1,若它們的交點(diǎn)在第四象限內(nèi).
(1)求k的取值范圍;
(2)若k為非負(fù)整數(shù),點(diǎn)A的坐標(biāo)(2,0),點(diǎn)P在直線x-2y=-k+6上,求使△PAO為等腰三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線x-2y=-k+6和直線x+3y=4k+1,若它們的交點(diǎn)在第四象限.
(1)求k的取值范圍;
(2)若k為非負(fù)整數(shù),求出函數(shù)x-2y=-k+6所有解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:競(jìng)賽輔導(dǎo):反比例函數(shù)、一次函數(shù)及其應(yīng)用1(解析版) 題型:解答題

已知直線x-2y=-k+6和x+3y=4k+1,若它們的交點(diǎn)在第四象限內(nèi).
(1)求k的取值范圍;
(2)若k為非負(fù)整數(shù),點(diǎn)A的坐標(biāo)(2,0),點(diǎn)P在直線x-2y=-k+6上,求使△PAO為等腰三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案