【題目】如圖,某人在C處看到遠處有一涼亭B,在涼亭B正東方向有一棵大樹A,這時此人在C處測得B在北偏西45°方向上,測得A在北偏東35°方向上.又測得A、C之間的距離為100米,求A、B之間的距離.(精確到1米).(參考數(shù)據(jù):sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)

【答案】解:過點C⊥AB于點D,
在Rt△ACD中,
∵∠ACD=35°,AC=100m,
∴AD=100sin∠ACD=100×0.574=57.4(m),
CD=100cos∠ACD=100×0.819=81.9(m),
在Rt△BCD中,
∵∠BCD=45°,
∴BD=CD=81.9m,
則AB=AD+BD=57.4+81.9≈139(m).
答:A、B之間的距離約為139米.

【解析】過點C⊥AB于點D,在Rt△ACD中,求出AD、CD的值,然后在Rt△BCD中求出BD的長度,繼而可求得AB的長度.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB,點A、B均在小正方形的頂點上.
(1)在方格紙中畫出以AB為一邊的直角△ABC,點C在小正方形的頂點上,且△ABC的面積為3.
(2)在方格紙中將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后△DEC(點A與點D對應,點B與點E對應),請直接寫出點A繞著點C旋轉(zhuǎn)的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=x2﹣2x+k與x軸交于A、B兩點,與y軸交于點C(0,﹣3).[圖2、圖3為解答備用圖]

(1)k= , 點A的坐標為 , 點B的坐標為;
(2)設(shè)拋物線y=x2﹣2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由;
(4)在拋物線y=x2﹣2x+k上求點Q,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OABC是平行四邊形,對角線OB在軸正半軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y= 和y= 的一支上,分別過點A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:
= ;
②陰影部分面積是 (k1+k2);
③當∠AOC=90°時,|k1|=|k2|;
④若OABC是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.

其中正確的結(jié)論是(把所有正確的結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明晚上由路燈A下的點B處走到點C處時,測得自身影子CD的長為1米,他繼續(xù)往前走3米到達點E處(即CE=3米),測得自己影子EF的長為2米,已知小明的身高是1.5米,那么路燈A的高度AB是(
A.4.5米
B.6米
C.7.2米
D.8米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角△ABC中,∠C=90°,∠A、∠B與∠C的對邊分別是a、b和c,那么下列關(guān)系中,正確的是(
A.cosA=
B.tanA=
C.sinA=
D.cosA=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,點E在BC邊上,AE與BD交于點F,∠BAE=∠DBC.
(1)求證:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:“等角對等邊”).

已知:如圖,
求證:
(2)證明命題

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,假命題有( ) ①兩點之間線段最短;②到角的兩邊距離相等的點在角的平分線上;
③過一點有且只有一條直線與已知直線平行;④垂直于同一直線的兩條直線平行;
⑤若⊙O的弦AB,CD交于點P,則PAPB=PCPD.
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

同步練習冊答案