如圖,在平面直角坐標系xOy中,把矩形COAB繞點C順時針旋轉α角,得到矩形CFED.設FC與AB交于點H,且A(0,4),C(6,0)
(1)當α=60°時,判斷△CBD的形狀.
(2)若AH=HC,求點H的坐標.
分析:(1)根據(jù)旋轉可得∠BCD=∠OCF=60°,BC=BD,再根據(jù)有一個角等于60°的等腰三角形是等邊三角形可得△BCD是等邊三角形.
(2)根據(jù)A、C點坐標可得AB=6,BC=4,再根據(jù)勾股定理可得(AB-AH)2+BC2=AH2,然后代入數(shù)進行計算即可得到AH的長,進而得到H點坐標.
解答:(1)解:∵矩形COAB繞點C順時針旋轉α角,得到矩形CFED,
∴∠BCD=∠OCF=60°,BC=BD,
∴△BCD是等邊三角形.     

(2)解:∵四邊形COAB是矩形,A(0,4),C(6,0),
∴AB=6,BC=4,
∵AH=HC,
∴(AB-AH)2+BC2=AH2,
∴(6-AH)2+42=AH2
AH=
13
3
,
∴H(
13
3
,4).
點評:此題主要考查了圖形的旋轉,關鍵是掌握旋轉以后哪些角是相等的,哪些線段是對應相等的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案