將平行四邊形ABCD對角線的交點與直角坐標(biāo)系的原點重合,且點A與點B的坐標(biāo)分別是(-2,-1),(
1
2
,-1),則點C和點D的坐標(biāo)分別為( 。
A、(2,1)和(-
1
2
,1)
B、(2,-1)和(-
1
2
,1)
C、(-2,1)和(
1
2
,1)
D、(-1,-2)和(-1,
1
2
分析:由四邊形ABCD對角線的交點與直角坐標(biāo)系的原點重合,即可得出A、C與B、D分別關(guān)于原點對稱,進(jìn)而可求解.
解答:解:∵A、C與B、D分別關(guān)于原點對稱,點A與點B的坐標(biāo)分別是(-2,-1),(
1
2
,-1),
∴可得C點的坐標(biāo)為(2,1);點D的坐標(biāo)為(-
1
2
,1).
故此題選A.
點評:此題主要考查坐標(biāo)與圖形的結(jié)合問題,即對稱問題,熟練掌握平行四邊形的性質(zhì)及對稱的而性質(zhì),能夠求解一些簡單的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知M是平行四邊形ABCD的邊CD的中點,N為AB邊上一點,且AN=3NB,連AM、MN分別交BD于E、F(如圖①).
(1)在圖②中畫出滿足上述條件的圖形,試用刻度尺在圖①、②中量得DE、EF、FB的長度,并填入下表.
DE的長度 EF的長度 FB的長度
圖①中
圖②中
由上表可猜想DE、EF、FB間的大小關(guān)系是DE=EF=FB.
(2)上述(1)中的猜想DE、EF、FB間的關(guān)系成立嗎?為什么?
(3)若將平行四邊形ABCD改成梯形(其中AB∥CD),且AB=2CD,其它條件不變,此時(1)中猜想DE、EF、FB的關(guān)系是否成立?若成立,說明理由;若不成立,求出DE:EF:FB的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程精英家教網(wǎng)x2-7x+12=0的兩個根,且OA>OB.
(1)則點C的坐標(biāo)是
 
,點D的坐標(biāo)是
 
;
(2)若將此平行四邊形ABCD沿x軸正方向向右平移3個單位,沿y軸正方向向上平移2個單位,則點C的坐標(biāo)是
 
,點D的坐標(biāo)是
 
;
(3)若將平行四邊形ABCD平移到第一象限后,點B的坐標(biāo)是(a,b),則點C的坐標(biāo)是
 
,點D的坐標(biāo)是
 
;
(4)若點M在平面直角坐標(biāo)系內(nèi),則在上圖的直線AB上,并且在第一、第二象限內(nèi)是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,將平行四邊形ABCD的對角線BD向兩個方向延長至點E和點F,使BE=DF,求證四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,將平行四邊形ABCD折疊,使頂點D恰落在AB邊上的點M處,折痕為AN,那么對于結(jié)論 ①M(fèi)N∥BC,②MN=AM,下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在平面直角坐標(biāo)系中,平行四邊形ABCD頂點A(0,0),C(10,4),直線y=ax-2a-1將平行四邊形ABCD分成面積相等的兩部分,求a的值.

查看答案和解析>>

同步練習(xí)冊答案