【題目】萬安縣開發(fā)區(qū)某電子電路板廠到井岡山大學(xué)從應(yīng)屆畢業(yè)生中招聘公司職員,對(duì)應(yīng)聘者的專業(yè)知識(shí)、英語水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5∶3∶2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.

項(xiàng)目

專業(yè)知識(shí)

英語水平

參加社會(huì)實(shí)踐與

社團(tuán)活動(dòng)等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分別算出4位應(yīng)聘者的總分;

(2)表中四人“專業(yè)知識(shí)”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請(qǐng)你求出四人“參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等”的平均分及方差;

(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對(duì)大學(xué)生應(yīng)聘者有何建議?

【答案】(1)應(yīng)聘者甲總分為86分;應(yīng)聘者乙總分為82分;應(yīng)聘者丙總分為81分;應(yīng)聘者丁總分為82分.(2)200;(3)詳見解析.

【解析】

(1) 根據(jù)加權(quán)平均數(shù)的計(jì)算公式列出算式, 再進(jìn)行計(jì)算即可.

(2) 平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個(gè)數(shù).根據(jù)平均數(shù)的計(jì)算公式先算出平均數(shù), 再根據(jù)方差公式進(jìn)行計(jì)算即可.

(3) 根據(jù) (1) 、 (2) 得出的結(jié)論和實(shí)際情況分別寫出合理的建議即可.

解:(1)應(yīng)聘者甲總分為86分;應(yīng)聘者乙總分為82分;

應(yīng)聘者丙總分為81分;應(yīng)聘者丁總分為82分.

(2)4人參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等的平均分?jǐn)?shù):

方差: 

(3)對(duì)于應(yīng)聘者的專業(yè)知識(shí)、英語水平的差距不大,但參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等方面的差距較大,影響學(xué)生的最后成績,將影響學(xué)生就業(yè).學(xué)生不僅注重自己的文化知識(shí)的學(xué)習(xí),更應(yīng)注重社會(huì)實(shí)踐與社團(tuán)活動(dòng)的開展,從而促進(jìn)學(xué)生綜合素質(zhì)的提升.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn),點(diǎn)R是點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn),直線QR分別交∠AOB兩邊OA,OB于點(diǎn)M,N,連結(jié)PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號(hào)和π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù) 的圖象上.若點(diǎn)A的坐標(biāo)為(﹣2,﹣2),則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:﹣22+ -2cos60°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

1)如圖1,若ABCD,點(diǎn)PAB、CD內(nèi)部,B=50°,D=30°,求BPD

2)如圖2,將點(diǎn)P移到AB、CD外部,則BPD、B、D之間有何數(shù)量關(guān)系?(不需證明)

3)如圖3,寫出BPDBDBQD之間的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

4)如圖4,求出A+B+C+D+E+F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知y=﹣x+m(m>4)過動(dòng)點(diǎn)A(m,0),并與反比例函數(shù)y= 的圖象交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左邊),以O(shè)A為直徑作反比例函數(shù)y= 的圖象相交的半圓,圓心為P,過點(diǎn)B作x軸的垂線,垂足為E,并于半圓P交于點(diǎn)D.
(1)當(dāng)m=5時(shí),求B、C兩點(diǎn)的坐標(biāo).
(2)求證:無論m取何值,線段DE的長始終為定值.
(3)記點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)為C′,當(dāng)四邊形CDC′E為菱形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中AB=3,BC=4,∠B=90°,點(diǎn)B、C在兩坐標(biāo)軸上滑動(dòng).當(dāng)邊AC⊥x軸時(shí),點(diǎn)A剛好在雙曲線 上,此時(shí)下列結(jié)論不正確的是( )

A.點(diǎn)B為(0,
B.AC邊的高為
C.雙曲線為
D.此時(shí)點(diǎn)A與點(diǎn)O距離最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點(diǎn)o和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D.直線y=﹣2x﹣1經(jīng)過拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.

(1)求m的值及該拋物線對(duì)應(yīng)的解析式;
(2)P(x,y)是拋物線上的一點(diǎn),若SADP=SADC , 求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形.若能,請(qǐng)直接寫出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案