【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動,直到點(diǎn)O為止;動點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動,與點(diǎn)P同時(shí)結(jié)束運(yùn)動.

(1)點(diǎn)P到達(dá)終點(diǎn)O的運(yùn)動時(shí)間是   s,此時(shí)點(diǎn)Q的運(yùn)動距離是   cm;

(2)當(dāng)運(yùn)動時(shí)間為2s時(shí),P、Q兩點(diǎn)的距離為   cm;

(3)請你計(jì)算出發(fā)多久時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;

(4)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線y=過點(diǎn)D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.

【答案】(1);(2);(3)t=t=;(4).

【解析】

1)先求出OA,進(jìn)而求出時(shí)間,即可得出結(jié)論;

(2)構(gòu)造出直角三角形,再求出PE,QE,利用勾股定理即可得出結(jié)論;

(3)同(2)的方法利用勾股定理建立方程求解即可得出結(jié)論;

(4)先求出直線AC解析式,再求出點(diǎn)P,Q坐標(biāo),進(jìn)而求出直線PQ解析式,聯(lián)立兩解析式即可得出結(jié)論.

(1)∵四邊形AOCB是矩形,

OA=BC=16,

∵動點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動,

t=,此時(shí),點(diǎn)Q的運(yùn)動距離是×2=cm;

(2)如圖1,由運(yùn)動知,AP=3×2=6cm,CQ=2×2=4cm,

過點(diǎn)PPEBCE,過點(diǎn)QQFOAF,

∴四邊形APEB是矩形,

PE=AB=6,BE=6,

EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,

根據(jù)勾股定理得,PQ=6;

(3)設(shè)運(yùn)動時(shí)間為t秒時(shí),

由運(yùn)動知,AP=3t,CQ=2t,

同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,

∵點(diǎn)P和點(diǎn)Q之間的距離是10cm,

62+(16﹣5t)2=100,

t=t=;

(4)k的值是不會變化,

理由:∵四邊形AOCB是矩形,

OC=AB=6,OA=16,

C(6,0),A(0,16),

∴直線AC的解析式為y=﹣x+16,

設(shè)運(yùn)動時(shí)間為t,

AP=3t,CQ=2t,

OP=16﹣3t,

P(0,16﹣3t),Q(6,2t),

PQ解析式為y=x+16﹣3t,

聯(lián)立①②解得,x=,y=,

D(,),

k=×=是定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)大小一樣的直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到△DEF的位置,AB10DH4,平移距離為6,則陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計(jì)的過直線外一點(diǎn)作這條直線的平行線的尺規(guī)作圖過程.

已知:直線及直線外一點(diǎn)

求作:,使得

作法:如圖,

在直線上取一點(diǎn),作射線,以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn);

在直線上取一點(diǎn)(不與點(diǎn)重合),作射線,以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn);

作直線

所以直線就是所求作的直線.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:_______,_______,

(____________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,動點(diǎn)P按圖中箭頭所示方向從原點(diǎn)出發(fā),1次運(yùn)動到P1(1,1),2次接著運(yùn)動到點(diǎn)P2(2,0),第3次接著運(yùn)動到點(diǎn)P3(3,-2),,按這的運(yùn)動規(guī)律,點(diǎn)P2019的坐標(biāo)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)Cx軸的負(fù)半軸上,AC=6.

(1)直接寫出點(diǎn)C的坐標(biāo).

(2)y軸上是否存在點(diǎn)P,使得SPOB=SABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生上學(xué)的交通方式,現(xiàn)從全校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行我上學(xué)的交通方式問卷調(diào)查,規(guī)定每人必須并且只能在乘車”、“步行”、“騎車其他四項(xiàng)中選擇一項(xiàng),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請解答下列問題:

(1)在這次調(diào)查中,該學(xué)校一共抽樣調(diào)查了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該學(xué)校共有1500名學(xué)生,試估計(jì)該學(xué)校學(xué)生中選擇步行方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC=90°,D是直線AB上的點(diǎn),AD=BC,如圖,過點(diǎn)A作AFAB,并截取AF=BD,連接DC、DF、CF.

(1)求證:FAD≌△DBC;

(2)判斷CDF的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè),

①如圖2,當(dāng)點(diǎn)在線段BC上移動,則之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當(dāng)點(diǎn)在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請?jiān)趫D2的方格中畫出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線化為實(shí)線)

(2)若要用大小相同的小立方塊搭一個(gè)幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫的形狀圖相同,則搭這樣的一個(gè)幾何體最多需要   個(gè)小立方塊.

查看答案和解析>>

同步練習(xí)冊答案