8、如圖,PA切⊙O于點A,PBC是⊙O的割線且過圓心,PA=4,PB=2,則⊙O的半徑等于( 。
分析:先由切割線定理知:AP2=PB•PC,可求出PC=8,則BC=PC-PB=6,進而可求出半徑OC=3.
解答:解:∵PA切⊙O于A割線PBC過圓心,交⊙O于B、C,
∴AP2=PB•PC;
又PA=4,PB=2;
∴PC=8,
∴BC=6,
∴OC=3.
故選A.
點評:本題考查了切割線定理,解題的關鍵是利用切割線定理得到等積式,代入數(shù)據(jù)計算即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PC過點O且于點B、C,若PA=6cm,PB=4cm,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,PA切⊙O于點A,割線PBC交⊙O于B、C兩點,∠APC的平分線分別交AC、AB于D、E兩點.請在圖中找出2對相似三角形,并從中選擇一對相似三角形說明其為什么相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖,PA切⊙O于點A,PBC是經(jīng)過O點的割線,若∠P=30°,則弧AB的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PBC是⊙O的割線,若PB=BC=2,則PA=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,PA切⊙O于點A,PBC是經(jīng)過圓心的割線,并與圓相交于點B,C.若PC=9,PA=3,則∠P的余弦值是( 。

查看答案和解析>>

同步練習冊答案