【題目】已知△ABC的三邊長分別為3,4,5,△DEF的三邊長分別為3,3x﹣2,2x+1,若這兩個三角形全等,則x的值為( 。
A. 2 B. 2或 C. 或 D. 2或或
【答案】A
【解析】
首先根據(jù)全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等可得:3x-2與4是對應(yīng)邊,或3x-2與5是對應(yīng)邊,計算發(fā)現(xiàn),3x-2=5時,2x-1≠4,故3x-2與5不是對應(yīng)邊.
解:∵△ABC三邊長分別為3,4,5,△DEF三邊長分別為3,3x-2,2x-1,這兩個三角形全等,
①3x-2=4,解得:x=2,
當(dāng)x=2時,2x+1=5,兩個三角形全等.
②當(dāng)3x-2=5,解得:x=,
把x=代入2x+1≠4,
∴3x-2與5不是對應(yīng)邊,兩個三角形不全等.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點,連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各式:
(1)= ;
(2)= ;
(3)= ;
(4)= ;
(5)= ;
(6)猜想= .(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx交x軸的負(fù)半軸于點A.點B是y軸正半軸上一點,點A關(guān)于點B的對稱點A′恰好落在拋物線上.過點A′作x軸的平行線交拋物線于另一點C.若點A′的橫坐標(biāo)為1,則A′C的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標(biāo)準(zhǔn),凡達(dá)到或超過這個標(biāo)準(zhǔn)的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù) 來確定獎勵標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個數(shù)達(dá)到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,線段BC的延長線過點E,與線段AD交于點F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的媽媽在菜市場買回3斤蘿卜、2斤排骨,準(zhǔn)備做蘿卜排骨湯,下面是爸爸媽媽的對話:
媽媽:“上個月蘿卜的單價是元/斤,排骨的單價比蘿卜的7倍還多2元”;
爸爸:“今天,報紙上說與上個月相比,蘿卜的單價上漲了25%,排骨的單價上漲了20%”
請根據(jù)上面的對話信息回答下列問題:
(1)請用含的式子填空:上個月排骨的單價是_________元/斤,這個月蘿卜的單價是__________元/斤,排骨的單價是______________元/斤。
(2)列式表示今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?(結(jié)果要求化成最簡)
(3)當(dāng)=4,求今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB∥CD,EG平分∠AEF,EH⊥EG,EH∥GF,則下列結(jié)論:①EG⊥GF;②EH平分∠BEF;③FG平分∠EFC;④∠EHF=∠FEH+∠HFD;其中正確的結(jié)論個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備印制一-批證書,現(xiàn)有兩個印刷廠可供選擇:
甲廠收費方式:收制版費1000元,每本印刷費0.5元;
乙廠收費方式:不超過2000本時,每本收印刷費1.5元;超過2000本時,超過的部分每本收印刷費0.25元,若該校印刷證書本.
(1)若不超過2000時,甲廠的收費為 元,乙廠的收費為 元;
(2)若超過2000時,甲廠的收費為 元, 乙廠的收費為 元;
(3)當(dāng)印制證書8000本時應(yīng)該選擇哪個印刷廠更節(jié)省費用?節(jié)省多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com