【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分ACABM,

1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長(zhǎng).

【答案】136°;(28.

【解析】

1)由ABAC,∠A36°,可求得∠ACB的度數(shù),又由直線MN垂直平分ACABM,根據(jù)線段垂直平分線的性質(zhì),可求得AMCM,即可求得∠ACM的度數(shù),繼而求得∠BCM的度數(shù);

2)由AMCM,可得BCM的周長(zhǎng)=BCAB

解:(1)∵ABAC,∠A36°,

∴∠B=∠ACB72°,

∵直線MN垂直平分ACABM,

AMCM

∴∠ACM=∠A36°,

∴∠BCM=∠ACBACM36°;

2)∵AMCM,

∴△BCM的周長(zhǎng)=BCCMBMBCAMBMBCAB358

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.

(1)已知甲隊(duì)在初賽階段的積分為分,甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);

(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=60°,∠C=40°P,Q分別在BCCA上,AP,BQ分別是∠BAC,∠ABC的角平分線.求證:BQ+AQ=AB+BP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD的邊長(zhǎng)為8,點(diǎn)E、F分別在AD、CD上,AEDF2,BEAF相交于點(diǎn)G,點(diǎn)HBF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,是邊上一點(diǎn)(點(diǎn)不與點(diǎn)重合),連接

(感知)如圖1,過(guò)點(diǎn)于點(diǎn).易證.(不需要證明)

(探究)如圖2,取的中點(diǎn),過(guò)點(diǎn)于點(diǎn),交于點(diǎn)

1)求證:

2)連接.若,則的長(zhǎng)為___________

(應(yīng)用)如圖3,取的中點(diǎn),連接.過(guò)點(diǎn)于點(diǎn),連接.若,則四邊形的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.

(1)求證:△BDF是等腰三角形;
(2)如圖2,過(guò)點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.
①判斷四邊形BFDG的形狀,并說(shuō)明理由;
②若AB=6,AD=8,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),連結(jié)DE,過(guò)頂點(diǎn)B作BF⊥DE,垂足為F,BF分別交AC于H,交BC于G.
(1)求證:BG=DE;
(2)若點(diǎn)G為CD的中點(diǎn),求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的面積為3,BDDC21EAC的中點(diǎn),ADBE相交于點(diǎn)P,那么四邊形PDCE的面積為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案