【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和( )
A.大于0
B.等于0
C.小于0
D.不能確定
【答案】C
【解析】解:設(shè)ax2+bx+c=0(a≠0)的兩根為x1 , x2 ,
∵由二次函數(shù)的圖象可知x1+x2>0,a>0,
∴﹣ >0.設(shè)方程ax2+(b﹣ )x+c=0(a≠0)的兩根為a,b,則a+b=﹣ =﹣ + ,
∵a>0,
∴ >0,
∴a+b>0.
故選C.
【考點(diǎn)精析】掌握拋物線與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時,圖像與x軸有兩個交點(diǎn);當(dāng)b2-4ac=0時,圖像與x軸有一個交點(diǎn);當(dāng)b2-4ac<0時,圖像與x軸沒有交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A. 在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形
B. 在△ABC中,若a2=(b+c) (b-c),則△ABC是直角三角形
C. 在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形
D. 在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,C為線段AE上一動點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE、AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°. 恒成立的結(jié)論有( )
A. ①③④⑤ B. ①②④⑤
C. ①②③⑤ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在太空種子種植體驗實踐活動中,為了解“宇番2號”番茄,某?萍夹〗M隨機(jī)調(diào)查60株番茄的掛果數(shù)量x(單位:個),并繪制如下不完整的統(tǒng)計圖表:
“宇番2號”番茄掛果數(shù)量統(tǒng)計表
掛果數(shù)量x(個) | 頻數(shù)(株) | 頻率 |
25≤x<35 | 6 | 0.1 |
35≤x<45 | 12 | 0.2 |
45≤x<55 | a | 0.25 |
55≤x<65 | 18 | b |
65≤x<75 | 9 | 0.15 |
請結(jié)合圖表中的信息解答下列問題:
(1)統(tǒng)計表中,a= , b=;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若繪制“番茄掛果數(shù)量扇形統(tǒng)計圖”,則掛果數(shù)量在“35≤x<45”所對應(yīng)扇形的圓心角度數(shù)為°;
(4)若所種植的“宇番2號”番茄有1000株,則可以估計掛果數(shù)量在“55≤x<65”范圍的番茄有株.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.
(1)仿照以上方法計算:=______;=_____.
(2)若,寫出滿足題意的x的整數(shù)值______.
如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次 =1,這時候結(jié)果為1.
(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.
(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動時,求能使△BCQ成為等腰三角形的運(yùn)動時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動,同時,點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動.它們運(yùn)動的時間為t(s).
(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,當(dāng)t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市政府計劃投資1.4萬億元實施東進(jìn)戰(zhàn)略.為了解深圳市民對東進(jìn)戰(zhàn)略的關(guān)注情況.某校數(shù)學(xué)興趣小組隨機(jī)采訪部分深圳市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | M | 0.1 |
B.一般關(guān)注 | 100 | 0.5 |
C.不關(guān)注 | 30 | N |
D.不知道 | 50 | 0.25 |
(1)根據(jù)上述統(tǒng)計圖可得此次采訪的人數(shù)為人,m= , n=
(2)根據(jù)以上信息補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,請估計在15000名深圳市民中,高度關(guān)注東進(jìn)戰(zhàn)略的深圳市民約有人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com