如圖所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,點P是△ABC的外角∠BCN的角平分線上一個動點,點P′是點P關于直線BC的對稱點,連結(jié)PP′交BC于點M,BP′交AC于D,連結(jié)BP、AP′、CP′.

(1)若四邊形BPCP′為菱形,求BM的長;
(2)若△BMP′∽△ABC,求BM的長;
(3)若△ABD為等腰三角形,求△ABD的面積.
解:(1)∵四邊形BPCP′為菱形,而菱形的對角線互相垂直平分,
∴點M為BC的中點,∴BM=BC=×4=2。
(2)∵△ABC為等腰直角三角形,若△BMP′∽△ABC,
∴△BMP′必為等腰直角三角形,BM=MP′。
由對稱軸可知,MP=MP′,PP′⊥BC,則△BMP為等腰直角三角形,
∴△BPP′為等腰直角三角形,BP′=BP。
∵∠CBP=45°,∠BCP=(180°﹣45°)=67.5°,
∴∠BPC=180°﹣∠CBP﹣∠BCP=180°﹣45°﹣67.5°=67.5°。
∴∠BPC=∠BCP!郆P=BC=4!郆P′=4。
在等腰直角三角形BMP′中,斜邊BP′=4,∴BM=BP′=
(3)△ABD為等腰三角形,有3種情形:
①若AD=BD,如題圖②所示,此時△ABD為等腰直角三角形,斜邊AB=4,
。
②若AD=AB,如答圖①所示,
過點D作DE⊥AB于點E,則△ADE為等腰直角三角形,

∴DE=AD=AB=
,
③若AB=BD,則點D與點C重合,可知此時點P、點P′、點M均與點C重合,
。
(1)由菱形的性質(zhì)可知,點M為BC的中點,所以BM可求。
(2)△ABC為等腰直角三角形,若△BMP′∽△ABC,則△BMP′必為等腰直角三角形.證明△BMP′、△BMP、△BPP′均為等腰直角三角形,則BP=BP′;證明△BCP為等腰三角形,BP=BC,從而BP′=BC=4,進而求出BM的長度。
(3)△ABD為等腰三角形,有3種情形,分類討論計算。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

(2013年四川眉山3分)如圖,在函數(shù)(x<0)和(x>0)的圖象上,分別有A、B兩點,若AB∥x軸,交y軸于點C,且OA⊥OB,SAOC=,SBOC=,則線段AB的長度=   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,每個正方形網(wǎng)格的邊長為1個單位長度,將△ABC的三邊分別擴大一倍得到△(頂點均在格點上),若它們是以點P為位似中心的位似圖形,則點P的坐標是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為3,點E,F(xiàn)分別在邊AB、BC上,AE=BF=1,小球P從點E出發(fā)沿直線向點F運動,每當碰到正方形的邊時反彈,反彈時反射角等于入射角.當小球P第一次碰到點E時,小球P所經(jīng)過的路程為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知△ABC∽△DEF,若△ABC與△DEF的相似比為3:4,則△ABC與△DEF的面積之比為【   】
A.4:3B.3:4C.16:9D.9:16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.

(1)如圖①,當時,求的值;
(2)如圖②當DE平分∠CDB時,求證:AF=OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖.在ABCD中,AB=6、AD=9,∠BAD的平分線交BC于點E,DC的延長線于點F, BG⊥AE,垂足為G,若BG=4,則△CEF的面積是
A.2  B. C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

勞技課上小敏拿出了一個腰長為8厘米,底邊為6厘米的等腰三角形,她想用這個等腰三角形加工成一個邊長比是1:2的平行四邊形,平行四邊形的一個內(nèi)角恰好是這個等腰三角形的底角,平行四邊形的其它頂點均在三角形的邊上,則這個平行四邊形的較短的邊長為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果兩個相似三角形的面積比是1∶2,那么它們的周長比是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案