【題目】如圖所示,在正方形網(wǎng)格中,△ABC的頂點(diǎn)坐標(biāo)分別為(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)將△ABC繞著某點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到△A′B'C',請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo)和旋轉(zhuǎn)角度.
(2)畫出△ABC關(guān)于點(diǎn)A成中心對(duì)稱的△AED,若△ABC內(nèi)有一點(diǎn)P(a,b),請(qǐng)直接寫出經(jīng)過這次變換后點(diǎn)P的對(duì)稱點(diǎn)坐標(biāo).
【答案】(1)旋轉(zhuǎn)中心坐標(biāo)為(2,﹣3),旋轉(zhuǎn)角為90°;(2)作圖見解析,(﹣a﹣2,﹣b).
【解析】
(1)作線段BB′,線段AA′的垂直平分線交于點(diǎn)K,點(diǎn)K即為所求.連接AK、A′K,可得∠AKA′=90°,即可得旋轉(zhuǎn)角度數(shù);(2)分別作出C,B的對(duì)應(yīng)點(diǎn)E,D即可,利用中點(diǎn)坐標(biāo)公式求出對(duì)稱點(diǎn)的坐標(biāo)即可.
(1)如圖,作線段BB′,線段AA′的垂直平分線交于點(diǎn)K,點(diǎn)K即為所求.
∴旋轉(zhuǎn)中心坐標(biāo)為K(2,﹣3),
連接AK、A′K,
由網(wǎng)格的特點(diǎn)可知:∠AKA′=90°,
∴旋轉(zhuǎn)角為90°.
(2)如圖,△ADE即為所求,
設(shè)點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P′(x,y),
∵A(-1,0),P(a,b),點(diǎn)A為PP′的中點(diǎn),
∴,,
解得:x=-2-a,y=-b,
∴點(diǎn)P(a,b)經(jīng)過這次變換后點(diǎn)P的對(duì)稱點(diǎn)坐標(biāo)為(﹣a﹣2,﹣b).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在線段MN上存在點(diǎn)P、Q將線段MN分為相等的三部分,則稱P、Q為線段MN的三等分點(diǎn).
已知一次函數(shù)y=﹣x+3的圖象與x、y軸分別交于點(diǎn)M、N,且A、C為線段MN的三等分點(diǎn)(點(diǎn)A在點(diǎn)C的左邊).
(1)直接寫出點(diǎn)A、C的坐標(biāo);
(2)①二次函數(shù)的圖象恰好經(jīng)過點(diǎn)O、A、C,試求此二次函數(shù)的解析式;
②過點(diǎn)A、C分別作AB、CD垂直x軸于B、D兩點(diǎn),在此拋物線O、C之間取一點(diǎn)P(點(diǎn)P不與O、C重合)作PF⊥x軸于點(diǎn)F,PF交OC于點(diǎn)E,是否存在點(diǎn)P使得AP=BE?若存在,求出點(diǎn)P的坐標(biāo)?若不存在,試說明理由;
(3)在(2)的條件下,將△OAB沿AC方向移動(dòng)到△O'A'B'(點(diǎn)A'在線段AC上,且不與C重合),△O'A'B'與△OCD重疊部分的面積為S,試求當(dāng)S=時(shí)點(diǎn)A'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a,b,c是常數(shù),且)與x軸交于A、B兩點(diǎn),頂點(diǎn)P(m,n),下列結(jié)論中,其中正確的有( )
①;②若在拋物線上,則;③關(guān)于x的方程有實(shí)數(shù)解,則;④當(dāng)時(shí),△ABP為等腰直角三角形
A.①②B.③④C.②④D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:
(1)如圖1,在正方形ABCD中,E、F分別是BC、CD上的點(diǎn),且∠EAF=,請(qǐng)直接寫出BE、DF與EF之間的數(shù)量關(guān)系;
(2)如圖2,若把(1)問中的條件變?yōu)?/span>“四邊形ABCD中,AB=AD,∠B+∠D=,E、F分別是邊BC、CD上的點(diǎn),且,則(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由;
(3)在(2)問中,若將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、F分別運(yùn)動(dòng)到BC、CD延長線上時(shí),如圖3所示,其它條件不變,則(1)問中的結(jié)論是否發(fā)生變化?若變化,請(qǐng)寫出結(jié)論并證明,若不變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點(diǎn).將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)a角(0°<a<180°),得到△AB′C′(如圖2),連接DB',EC'.
(1)探究DB'與EC'的數(shù)量關(guān)系,并結(jié)合圖2給予證明;
(2)填空:
①當(dāng)旋轉(zhuǎn)角α的度數(shù)為_____時(shí),則DB'∥AE;
②在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)B',D,E在一條直線上,且AD=時(shí),此時(shí)EC′的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形,例如△ABC中,三邊分別為a、b、c,若滿足b2=ac,則稱△ABC為比例三角形,其中b為比例中項(xiàng).
(1)已知△ABC是比例三角形,AB=2,BC=3,請(qǐng)直接寫出所有滿足條件的AC的長;
(2)如圖,在四邊形ABCD中,AD∥BC,對(duì)角線BD平分∠ABC,∠BAC=∠ADC.
①請(qǐng)直接寫出圖中的比例三角形;
②作AH⊥BD,當(dāng)∠ADC=90°時(shí),求的值;
(3)三邊長分別為a、b、c的三角形是比例三角形,且b為比例中項(xiàng),已知拋物線y=ax2+bx+c與y軸交于點(diǎn)B,頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以OB為直徑的⊙M經(jīng)過點(diǎn)A,記△OAB的面積為S1,⊙M的面積為S2,試問S1:S2的值是否為定值?若是請(qǐng)求出定值,若不是請(qǐng)求出S1:S2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在RtABC中 ,C=90°,a 、b 、c 分別為∠A 、∠B 、∠C的對(duì)邊,a、 b是關(guān)于的方程的兩根,那么AB邊上的中線長是()
A.B.C.5D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C三點(diǎn)分別為(4,0),(4,4),(0,4),點(diǎn)P在x軸上,點(diǎn)D在直線AB上,若DA=1,CP⊥DP,垂足為P,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com