【題目】據(jù)統(tǒng)計(jì):從今年年初至520日,豬肉價(jià)格不斷走高,520日比年初價(jià)格上漲了60%.某市民于某超市今年520日購買1千克豬肉花40元錢.

1)問:那么今年年初豬肉的價(jià)格為每千克多少元?

2)某超市將進(jìn)貨價(jià)為每千克30元的豬肉,按520日價(jià)格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價(jià)每千克下降2元,其日銷售量就增加40千克,超市為了實(shí)現(xiàn)銷售豬肉每天有1120元的銷售利潤(rùn),為了盡可能讓顧客優(yōu)惠應(yīng)該每千克定價(jià)為多少元?

【答案】1)今年年初豬肉的價(jià)格為每千克25元; 2)應(yīng)該每千克定價(jià)為37元.

【解析】

1)設(shè)今年年初豬肉的價(jià)格為每千克x元,根據(jù)年初與520日豬肉單價(jià)間的關(guān)系,可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;
2)設(shè)每千克降價(jià)y元,則日銷售(100+)千克,根據(jù)總利潤(rùn)=每千克的利潤(rùn)×銷售數(shù)量,即可得出關(guān)于y的一元二次方程,解之即可得出y值,再將其較大值代入(40-y)中即可求出結(jié)論

解:(1)設(shè)今年年初豬肉的價(jià)格為每千克x元,

依題意,得:(1+60%x=40,
解得:x=25

答:今年年初豬肉的價(jià)格為每千克25元.

2)設(shè)每千克降價(jià)y元,則日銷售(100+)千克,

依題意,得:(40-30-y)(100+=1120,

解得:y1=2y2=3,

∵盡可能讓顧客優(yōu)惠,

y=3,

40-y=37

答:應(yīng)該每千克定價(jià)為37元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=x+m2+k的圖象,其頂點(diǎn)坐標(biāo)為M1,﹣4

1)求出圖象與x軸的交點(diǎn)A、B的坐標(biāo);

2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使SPAB=SMAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,ABACBC4,點(diǎn)DAC邊上一動(dòng)點(diǎn),連接BD,以AD為直徑的圓交BD于點(diǎn)E,則線段CE長(zhǎng)度的最小值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠A是銳角,E為邊AD上一點(diǎn),△ABE沿著BE折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)F恰好落在邊CD上,連接EF,BF,給出下列結(jié)論:

①若∠A=70°,則∠ABE=35°;②若點(diǎn)FCD的中點(diǎn),則SABES菱形ABCD

下列判斷正確的是( 。

A. ①,②都對(duì)B. ①,②都錯(cuò)C. ①對(duì),②錯(cuò)D. ①錯(cuò),②對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O是一個(gè)量角器,AOB為一紙片,點(diǎn)A在半圓上,邊AB與半圓相交于點(diǎn)D,邊OB與半圓相交于點(diǎn)C,若點(diǎn)C、DA在量角器上對(duì)應(yīng)讀數(shù)分別為40°,70°150°,則∠B的度數(shù)是(  )

A. 20°B. 25°C. 30°D. 35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為  

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+bx2x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A1,0).

(1)求拋物線的解析式;

(2)判斷△ABC的形狀,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+4ax+c的最大值為4,且圖象過點(diǎn)(﹣3,0).

1)求二次函數(shù)解析式;

2)若將該二次函數(shù)的圖象繞著原點(diǎn)旋轉(zhuǎn)180°,請(qǐng)直接寫出旋轉(zhuǎn)后圖象的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在以點(diǎn)為圓心的兩個(gè)同心圓中,大圓的弦交小圓于點(diǎn)、.

1)求證:;

2)若大圓的半徑,小圓的半徑,且圓心到直線的距離為,的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案