【題目】據(jù)市場調(diào)查,天貓超市在銷售一種進(jìn)價(jià)為每件40元的護(hù)眼臺(tái)燈中發(fā)現(xiàn):每月銷售量(件)與銷售單價(jià)(元)之間的函數(shù)關(guān)系如圖所示.
(1)當(dāng)銷售單價(jià)定為50元時(shí),求每月的銷售件數(shù);
(2)設(shè)每月獲得利潤為(元),求每月獲得利潤(元)關(guān)于銷售單價(jià)(元)的函數(shù)解析式;
(3)由于市場競爭激烈,這種護(hù)眼燈的銷售單價(jià)不得高于75元,如果要每月獲得的利潤不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量).
【答案】(1)500;(2);(3)時(shí),有最小值=10000元.
【解析】
(1)設(shè),把代入即可求出一次函數(shù)的解析式,然后將x=50代入即可;
(2)根據(jù)總利潤=單件的利潤×件數(shù)即可求出每月獲得利潤(元)關(guān)于銷售單價(jià)(元)的函數(shù)解析式;
(3)根據(jù)題意列出不等式組,即可求出x的取值范圍,設(shè)成本為,根據(jù)成本=進(jìn)價(jià)×銷售量,即可求出S與x的函數(shù)關(guān)系式,然后利用一次函數(shù)的增減性即可求出S的最小值.
解:(1)設(shè),把代入可得
,
解得,
∴,
當(dāng)時(shí),件.
(2)根據(jù)題意可得.
(3)由題意,
解得,
設(shè)成本為,
∴,
∵,
∴隨增大而減小,
∴時(shí),有最小值=10000元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、P在⊙O上,CD⊥OA,CE⊥OB,垂足分別為D,E,∠DCE=40°,則∠P的度數(shù)為( 。
A.70°B.60°C.40°D.35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,∠A=120°,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)P是對角線BD上一動(dòng)點(diǎn),設(shè)PD的長度為x,PE與PC的長度和為y,圖2是y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點(diǎn),則a+b的值為( 。
A.7B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)O(0,0),A(-5,0),B(2,1),拋物線l:y=-(x-h)2+1(h為常數(shù))與y軸的交點(diǎn)為C.
(1)l經(jīng)過點(diǎn)B,求它的解析式,并寫出此時(shí)l的對稱軸及頂點(diǎn)坐標(biāo):
(2)設(shè)點(diǎn)C的縱坐標(biāo)為yc,求yc的最大值,此時(shí)l上有兩點(diǎn)(x1,y1),(x2,y2),其中x1>x2≥0,比較y1與y1的大;
(3)當(dāng)線段OA被l只分為兩部分,且這兩部分的比是1:4時(shí),求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連結(jié)CE交AD于點(diǎn)F,連結(jié)BD交CE于點(diǎn)G,連結(jié)BE. 下列結(jié)論中:① CE=BD; ②△ADC是等腰直角三角形;
③∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正確的結(jié)論有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點(diǎn)C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點(diǎn)C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點(diǎn)A1,A2,A3,…都在直線C1C2同側(cè),如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,則△AnCnCn+1的周長為_______(n≥1,且n為整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.
【答案】
【解析】分析:根據(jù)菱形的性質(zhì)易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.
詳解:∵菱形ABCD中,其周長為32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD為等邊三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根據(jù)勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面積為: =.
點(diǎn)睛:本題考查了菱形性質(zhì):1.菱形的四個(gè)邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.
【題型】填空題
【結(jié)束】
17
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點(diǎn)A落在BC 邊上的點(diǎn)D處,EF為折痕,若AE=2,則的值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銅仁市教育局為了了解七年級學(xué)生寒假參加社會(huì)實(shí)踐活動(dòng)的天數(shù),隨機(jī)抽查本市部分七年級學(xué)生寒假參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:
(1)a= %,并寫出該扇形所對圓心角的度數(shù)為 ;補(bǔ)全條形圖;
(2)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(3)如果該市有七年級學(xué)生20000人,請你估計(jì)“活動(dòng)時(shí)間不少于5天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足,連接AF并延長交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正確的是 (寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com