【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價﹣制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

【答案】
(1)解:z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,

∴z與x之間的函數(shù)解析式為z=﹣2x2+136x﹣1800;


(2)解:由z=350,得350=﹣2x2+136x﹣1800,

解這個方程得x1=25,x2=43,

所以,銷售單價定為25元或43元,

將z═﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512,

因此,當(dāng)銷售單價為34元時,每月能獲得最大利潤,最大利潤是512萬元;


(3)解:結(jié)合(2)及函數(shù)z=﹣2x2+136x﹣1800的圖象(如圖所示)可知,

當(dāng)25≤x≤43時z≥350,

又由限價32元,得25≤x≤32,

根據(jù)一次函數(shù)的性質(zhì),得y=﹣2x+100中y隨x的增大而減小,

∴當(dāng)x=32時,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(萬元),

因此,所求每月最低制造成本為648萬元.


【解析】(1)根據(jù)每月的利潤z=(x﹣18)y,再把y=﹣2x+100代入即可求出z與x之間的函數(shù)解析式,(2)把z=350代入z=﹣2x2+136x﹣1800,解這個方程即可,把函數(shù)關(guān)系式變形為頂點式運用二次函數(shù)的性質(zhì)求出最值;(3)根據(jù)銷售單價不能高于32元,廠商要獲得每月不低于350萬元的利潤得出銷售單價的取值范圍,進(jìn)而解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表: 請結(jié)合圖表完成下列各題:

組別

成績x分

頻數(shù)(人數(shù))

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10


(1)表中a的值為;
(2)頻數(shù)分布直方圖補充完整;
(3)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=10,點A在⊙O上,∠AMN=30°,B為弧AN的中點,P是直徑MN上一動點,則PA+PB的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC,垂足為F.

(1)求證:DF為⊙O的切線;
(2)若AE=4 ,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:
(1)扇形統(tǒng)計圖中m的值為 , n的值為
(2)補全條形統(tǒng)計圖;
(3)在選擇B類的學(xué)生中,甲、乙、丙三人在乒乓球項目表現(xiàn)突出,現(xiàn)決定從這三名同學(xué)中任選兩名參加市里組織的乒乓球比賽,選中甲同學(xué)的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=5,AB=4,點E,F(xiàn)在直線AD上,且四邊形BCFE為菱形.若線段EF的中點為點M,則線段AM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣5ax﹣6a交x軸于A、B兩點(A左B右),交y軸于點C,直線y=﹣x+b交拋物線于D,交x軸于E,且△ACE的面積為6.

(1)求拋物線的解析式;
(2)點P為CD上方拋物線上一點,過點P作x軸的平行線,交直線CD于F,設(shè)P點的橫坐標(biāo)為m,線段PF的長為d,求d與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,過點P作PG⊥CD,垂足為G,若∠APG=∠ACO,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE= ,CE=1.則 的長是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,菱形ABCD中,對角線AC,BD相交于點O,且AC=12cm,BD=16cm.點P從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,直線EF從點D出發(fā),沿DB方向勻速運動,速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點E,Q,F(xiàn);當(dāng)直線EF停止運動時,點P也停止運動.連接PF,設(shè)運動時間為t(s)(0<t<8).設(shè)四邊形APFE的面積為y(cm2),則下列圖象中,能表示y與t的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案