若將平面直角坐標(biāo)系內(nèi)圖案的橫坐標(biāo)保持不變,縱坐標(biāo)分別變成原來(lái)的2倍,連接各點(diǎn)所得圖案與原圖案相比

[  ]

A.縱向縮短一半
B.橫向縮短一半
C.橫向拉長(zhǎng)2倍
D.縱向拉長(zhǎng)2倍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系內(nèi),點(diǎn)A與C的坐標(biāo)分別為(4,8),(0,5),過(guò)點(diǎn)A作精英家教網(wǎng)AB⊥x軸于點(diǎn)B,過(guò)OB上的動(dòng)點(diǎn)D作直線y=kx+b平行于AC,與AB相交于點(diǎn)E,連接CD,過(guò)點(diǎn)E作直線EF∥CD,交AC于點(diǎn)F.
(1)求經(jīng)過(guò)點(diǎn)A,C兩點(diǎn)的直線解析式;
(2)當(dāng)點(diǎn)D在OB上移動(dòng)時(shí),能否使四邊形CDEF成為矩形?若能,求出此時(shí)k、b的值;若不能,請(qǐng)說(shuō)明理由;
(3)如果將直線AC作向下平移,交y軸于點(diǎn)C′,交AB于點(diǎn)A′,連接DC′,過(guò)點(diǎn)E作EF′∥DC′,交A′C′于點(diǎn)F′,那么能否使四邊形C′DEF′成為正方形?若能,請(qǐng)求出此時(shí)正方形的面積;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程精英家教網(wǎng)x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)則點(diǎn)C的坐標(biāo)是
 
,點(diǎn)D的坐標(biāo)是
 
;
(2)若將此平行四邊形ABCD沿x軸正方向向右平移3個(gè)單位,沿y軸正方向向上平移2個(gè)單位,則點(diǎn)C的坐標(biāo)是
 
,點(diǎn)D的坐標(biāo)是
 
;
(3)若將平行四邊形ABCD平移到第一象限后,點(diǎn)B的坐標(biāo)是(a,b),則點(diǎn)C的坐標(biāo)是
 
,點(diǎn)D的坐標(biāo)是
 

(4)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在上圖的直線AB上,并且在第一、第二象限內(nèi)是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為4的正方形紙片,置于平面直角坐標(biāo)系內(nèi),頂點(diǎn)A在坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,E、F分精英家教網(wǎng)別是AD、BC的中點(diǎn),點(diǎn)M在DC上.將△ADM沿AM折疊,點(diǎn)D折疊后恰好落在EF上的點(diǎn)P處.
(1)求∠EAP的度數(shù);
(2)求折痕AM所在直線的函數(shù)關(guān)系式;
(3)設(shè)H為直線AM上的點(diǎn),是否存在這樣的點(diǎn)H,使得以H、A、P為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

若將平面直角坐標(biāo)系內(nèi)圖案的橫坐標(biāo)保持不變,縱坐標(biāo)分別變成原來(lái)的2倍,連接各點(diǎn)所得圖案與原圖案相比


  1. A.
    縱向縮短一半
  2. B.
    橫向縮短一半
  3. C.
    橫向拉長(zhǎng)2倍
  4. D.
    縱向拉長(zhǎng)2倍

查看答案和解析>>

同步練習(xí)冊(cè)答案