【題目】如圖,在平面直角坐標(biāo)系中,與軸正半軸、軸正半軸分別交于點(diǎn)兩點(diǎn),直線交于兩點(diǎn),,的延長線交于點(diǎn),則的值為_______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D為⊙O上的點(diǎn),P為圓外一點(diǎn),PC、PD均與圓相切,設(shè)∠A+∠B=130°,∠CPD=β,則β=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA=6,點(diǎn)D是射線OM上的動(dòng)點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到△BCE,連接DE,設(shè)OD=m.
(1)問題發(fā)現(xiàn)
如圖1,△CDE的形狀是 三角形.
(2)探究證明
如圖2,當(dāng)6<m<10時(shí),△BDE的周長是否存在最小值?若存在,求出△BDE周長的最小值;若不存在,請說明理由.
(3)解決問題
是否存在m的值,使△DEB是直角三角形?若存在,請直接寫出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,半徑的長為4cm,點(diǎn)C為半圓上一動(dòng)點(diǎn),過點(diǎn)C作CE⊥AB,垂足為點(diǎn)E,點(diǎn)D為弧AC的中點(diǎn),連接DE,如果DE=2OE,求線段AE的長.
小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),將此問題轉(zhuǎn)化為函數(shù)問題解決.
小華假設(shè)AE的長度為xcm,線段DE的長度為ycm.
(當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),AE的長度為0cm),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小何的探究過程,請補(bǔ)充完整:(說明:相關(guān)數(shù)據(jù)保留一位小數(shù)).
(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 0 | 1.6 | 2.5 | 3.3 | 4.0 | 4.7 |
| 5.8 | 5.7 |
當(dāng)x=6cm時(shí),請你在圖中幫助小何完成作圖,并使用刻度尺度量此時(shí)線段DE的長度,填寫在表格空白處:
(2)在圖2中建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各組對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象解決問題,當(dāng)DE=2OE時(shí),AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A、D兩點(diǎn)作⊙O,并標(biāo)出圓心.(不寫作法,保留作圖痕跡).
(2)判斷直線BC與⊙O的位置關(guān)系,并說明理由.
(3)若AB=8,BD=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),,,四邊形是平行四邊形.現(xiàn)將沿軸方向平移個(gè)單位,得到,拋物線經(jīng)過點(diǎn),,.
(1)若拋物線的對稱軸為直線,求拋物線的解析式;
(2)拋物線的頂點(diǎn)為,若以,,為頂點(diǎn)的三角形的面積等于的面積的一半,求的值;
(3)在(2)的條件下,在軸上是否存在點(diǎn),使得?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求解方程:
(1)直接開平方法: 4(t-3)2=9(2t-3)2
(2)配方法:2x2-7x-4=0
(3)公式法: 3x2+5(2x+1)=0
(4)因式分解法:3(x-5)2=2(5-x)
(5)abx2-(a2+b2)x+ab=0 (ab≠0)
(6)用配方法求最值:6x2-x-12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過上一點(diǎn)E作EG∥AC交CD的延長線于點(diǎn)G,連接AE交CD于點(diǎn)F,且EG=FG.
(1)求證:EG是⊙O的切線;
(2)延長AB交GE的延長線于點(diǎn)M,若AH=2,,求OM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知∠BAC=36°,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是頂角為36°的等腰三角形,即∠A1B1A2=∠A2B2A3=∠A3B3A4=…=∠AnBnAn+1=36°,點(diǎn)A1,A2,A3,…,An在射線AC上,點(diǎn)B1,B2,B3,…,Bn在射線AB上,若A1A2=1,則線段A2018A2019的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com