【題目】先化簡,再求值:(a﹣2﹣ )÷ ,其中a=(3﹣π)0+( 1

【答案】解:(a﹣2﹣ )÷

=

=

=2a+6,

當(dāng)a=(3﹣π)0+( 1=1+4=5時,原式=2×5+6=16


【解析】整式減分式的通分要把整式看成分母是1的分式,除以一個分式等于乘以它的倒數(shù).
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在我國沿海有一艘不明國籍的輪船進(jìn)入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13nmileA,B兩個基地前去攔截,六分鐘后同時到達(dá)C地將其攔截.已知甲巡邏艇每小時航行120nmile,乙巡邏艇每小時航行50nmile,航向為北偏西40°,求甲巡邏艇的航向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADC,BD=DC

C.B=CBAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】100名學(xué)生參加兩次科技知識測試,條形圖顯示兩次測試的分?jǐn)?shù)分布情況如圖所示:根據(jù)條形圖提供的信息,下列說法中,正確的是( )

A. 兩次測試,最低分在第二次測試中

B. 第一次測試和第二次測試的平均分相同

C. 第一次分?jǐn)?shù)的中位數(shù)在2039分?jǐn)?shù)段

D. 第二次分?jǐn)?shù)的中位數(shù)在6079分?jǐn)?shù)段

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D,F(xiàn)分別在AB,AC邊上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.求證:BD⊥CF;
(3)在(2)小題的條件下,AC與BG的交點為M,當(dāng)AB=4,AD= 時,求線段CM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,DBC邊上的一點,連接AD,取AD的中點E,過點ABC的平行線與CE的延長線交于點F,連接DF.

(1)求證:AFDC;

(2)請問:ADCF滿足什么條件時,四邊形AFDC是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是平行四邊形,E、F是對角線AC上的兩點,若∠ABF=∠CDE90°.

(1)求證:四邊形BEDF是平行四邊形;

(2)ABAD8,BF6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF,ON于點B、點C,連接AB,PB.

(1)如圖1,當(dāng)P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè) =k,當(dāng)P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在邊CD上的點F處,若△DEF的周長為8,△CBF的周長為18,則FC的長為_____

查看答案和解析>>

同步練習(xí)冊答案