如圖,P是半圓O的直徑BC延長線上一點(diǎn),PA切半圓于點(diǎn)A,AH⊥BC于H,若PA=1,PB+PC=a(a>2),則PH等于( 。
A.
2
a
B.
1
a
C.
a
2
D.
a
3

如圖,連接OA.
∵PA2=PC•PB
又∵PC+PB=a
∴BC=PB-PC=
(PB+PC)2-4PB•PC
=
a2-4

∴OA=OC=
a2-4
2

∴OP=
OA2+PA2
=
a
2

又∵∠APH=∠OPA,∠PAO=∠PHA=90°
∴△APH△OPA
PH
PA
=
PA
OP

∴PH=
1
OP
=
2
a

故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA為圓的切線,A為切點(diǎn),PBC為割線,∠APC的平分線交AB于點(diǎn)D,交AC于點(diǎn)E.
求證:(1)AD=AE;(2)AB•AE=AC•DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知正方形ABCD的邊長為2
3
,點(diǎn)M是AD的中點(diǎn),P是線段MD上的一動(dòng)點(diǎn)(P不與M,D重合),以AB為直徑作⊙O,過點(diǎn)P作⊙O的切線交BC于點(diǎn)F,切點(diǎn)為E.
(1)除正方形ABCD的四邊和⊙O中的半徑外,圖中還有哪些相等的線段(不能添加字母和輔助線);
(2)求四邊形CDPF的周長;
(3)延長CD,F(xiàn)P相交于點(diǎn)G,如圖2所示.是否存在點(diǎn)P,使BF•FG=CF•OF?如果存在,試求此時(shí)AP的長;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示的方格紙中,有△ABC和半徑為2的⊙P,點(diǎn)A、B、C、P均在格點(diǎn)上(每個(gè)小方格的頂點(diǎn)叫格點(diǎn)).每個(gè)小方格都是邊長為1的正方形,將△ABC沿水平方向向左平移______單位時(shí),⊙P與直線AC相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點(diǎn)P從A點(diǎn)出發(fā),以
3
cm/s的速度,沿AC向C作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動(dòng).當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)當(dāng)P異于A、C時(shí),請(qǐng)說明PQBC;
(2)以P為圓心、PQ長為半徑作圓,請(qǐng)問:在整個(gè)運(yùn)動(dòng)過程中,t為怎樣的值時(shí),⊙P與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是圓O的弦,直線DE切圓O于點(diǎn)C,AC=BC,
求證:DEAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在邊長為2的等邊三角形ABC中,以B為圓心,AB為半徑作
AC
,在扇形BAC內(nèi)作⊙O與AB、BC、
AC
都相切,則⊙O的周長等于( 。
A.
4
9
π
B.
2
3
π
C.
4
3
π
D.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,P為AB延長線上的一點(diǎn),PC是⊙O的切線,C為切點(diǎn),∠A=35°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直角梯形ABCD中,ADBC,∠B=90°,BC=2AB=2AD=4.以AB為直徑作⊙O,點(diǎn)P在梯形內(nèi)的半圓弧上運(yùn)動(dòng),則△CPD的最小面積是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案