【題目】如圖,一次函數(shù)y=-x+b與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A(2,6)和B(m,1)
(1)填空:一次函數(shù)的解析式為 ,反比例函數(shù)的解析式為 ;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=5,求點(diǎn)E的坐標(biāo).
【答案】(1)y=﹣x+7,y=(2)(0,6)或(0,8)
【解析】分析:(1)把點(diǎn)A的坐標(biāo)分別代入一次函數(shù)y與反比例函數(shù),可得b,k的值,從而得到結(jié)論.
(2)把B(m,1)代入反比例函數(shù),得到m的值,從而得到B的坐標(biāo).設(shè)直線AB與y軸的交點(diǎn)為P,點(diǎn)E的坐標(biāo)為(0,a),連接AE,BE,則點(diǎn)P的坐標(biāo)為(0,7),得到PE=|a﹣7|.由S△AEB=S△BEP﹣S△AEP=5, 可求得a的值,從而得到點(diǎn)E的坐標(biāo).
詳解:(1)∵一次函數(shù)y=-x+b與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A(2,6),∴6=,k=2×6=12,解得:b=7,k=12.∴一次函數(shù)的解析式為,反比例函數(shù)的解析式為.
(2)∵B(m,1)在反比例函數(shù)上,∴1=,解得:m=12,∴B(12,1).
如圖,直線AB與y軸的交點(diǎn)為P,設(shè)點(diǎn)E的坐標(biāo)為(0,a),連接AE,BE,
則點(diǎn)P的坐標(biāo)為(0,7).
∴PE=|a﹣7|.
∵S△AEB=S△BEP﹣S△AEP=5,
∴×|a﹣7|×(12﹣2)=5.
∴|a﹣7|=1.
∴a1=6,a2=8.
∴點(diǎn)E的坐標(biāo)為(0,6)或(0,8).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,O為正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE·GB=4-2,求正方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中哪些是一元二次方程?將一元二次方程寫成一般式的形式,并指出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)
(1);
(2);
(3);
(4);
(5);
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公元9世紀(jì),阿拉伯?dāng)?shù)學(xué)家阿爾花拉子米在他的名著《代數(shù)學(xué)》中用圖解一元二次方程,他把一元二次方程寫成的形式,并將方程左邊的看作是由一個(gè)正方形(邊長為)和兩個(gè)同樣的矩形(一邊長為,另一邊長為)構(gòu)成的矩尺形,它的面積為,如圖所示。于是只要在這個(gè)圖形上添加一個(gè)小正方形,即可得到一個(gè)完整的大正方形,這個(gè)大正方形的面積可以表小為:___________ ,整理,得,因?yàn)?/span>表示邊長,所以 ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明玩具公司要生產(chǎn)若干件高級玩具,現(xiàn)有甲、乙兩個(gè)加工廠都想加工這批玩具,已知甲廠單獨(dú)加工這批玩具比乙廠單獨(dú)加工這批玩具多用20天,甲廠每天可加工16件玩具,乙廠每天可加工24件玩具,玩具公司每天需付給甲廠800元加工費(fèi),每天需付給乙廠1200元加工費(fèi).
(1)這個(gè)玩具公司要生產(chǎn)多少件高級玩具?
(2)在加工過程中,玩具公司需派一名技術(shù)員每天到加工廠進(jìn)行指導(dǎo),并為該技術(shù)員提供每天20元的午餐補(bǔ)助,玩具公司制訂玩具加工方案如下:可由一個(gè)廠單獨(dú)加工完成,也可由兩廠合作完成.請你幫助玩具公司選擇一種既省錢又省時(shí)的加工方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1:在等邊△ABC中,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連結(jié)BE,CD,點(diǎn)M、N、P分別是BE、CD、BC的中點(diǎn).
(1)觀察猜想
圖1中△PMN的形狀是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,△PMN的形狀是否發(fā)生改變?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線PQ,過點(diǎn)A作AQ⊥PQ于點(diǎn)Q,連接AP.
(1)填空:拋物線的解析式為 ,點(diǎn)C的坐標(biāo) ;
(2)點(diǎn)P在拋物線上運(yùn)動(dòng),若△AQP∽△AOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是“明清影視城”的一扇圓弧形門,小紅到影視城游玩,他了解到這扇門的相關(guān)數(shù)據(jù):這扇圓弧形門所在的圓與水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB.CD與水平地面都是垂直的.根據(jù)以上數(shù)據(jù),請你幫小紅計(jì)算出這扇圓弧形門的最高點(diǎn)離地面的距離是( )
A.2米 B.2.5米 C.2.4米 D.2.1米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a.
∵S四邊形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2
證明:連結(jié)______,過點(diǎn)B作________,則____________.
∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=____________.
又∵S五邊形ACBED=______________=ab+c2+a(b﹣a),
∴___________________=ab+c2+a(b﹣a),
∴a2+b2=c2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com