如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x=1,點(diǎn)A坐標(biāo)為(-1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a+2b+c>0 ③B點(diǎn)坐標(biāo)為(4,0);④當(dāng)x<-1時(shí),y>0.其中正確的是

A.①②      B.③④     C.①④      D.②③ 

C.

解析試題分析::∵對稱軸為x=1,
∴x=-=1,
∴-b=2a,
∴2a+b=0,故①正確;
∵拋物線與y軸交于負(fù)半軸,即x=0時(shí),y<0,
又對稱軸為x=1,
∴x=2時(shí),y<0,
∴4a+2b+c<0,故②錯(cuò)誤;
∵點(diǎn)A坐標(biāo)為(-1,0),對稱軸為x=1,
∴點(diǎn)B坐標(biāo)為(3,0),故③錯(cuò)誤;
由圖象可知當(dāng)x<-1時(shí),y>0.故④正確.
故選C.
考點(diǎn):1.二次函數(shù)圖象與系數(shù)的關(guān)系;2.二次函數(shù)的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,平面直角坐標(biāo)系中,矩形OABC的對角線AC=12,tan∠ACO=

(1)求B、C兩點(diǎn)的坐標(biāo);
(2)把矩形沿直線DE對折使點(diǎn)C落在點(diǎn)A處,DE與AC相交于點(diǎn)F,求直線DE的解析式;
(3)若點(diǎn)M在直線DE上,平面內(nèi)是否存在點(diǎn)N,使以O(shè)、F、M、N為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac;        
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2
上述4個(gè)判斷中,正確的是( 。

A.①② B.①④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中結(jié)論正確有(      )個(gè)。

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè) 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動,到點(diǎn)C,D時(shí)停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t(s),△OEF的面積為s(),則s()與t(s)的函數(shù)關(guān)系可用圖像表示為(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過平移得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分的面積為( 。

A.2 B.4 C.8 D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知的圖象如圖所示,其對稱軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)在(0,2)與(0,3)之間(不包含端點(diǎn)),則下列結(jié)論正確的是(    )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

拋物線y=3x2向右平移1個(gè)單位,再向下平移2個(gè)單位,所得到的拋物線是(    )
A.           B.
C.             D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a<0)的圖象如圖所示,當(dāng)-5≤x≤0時(shí),下列說法正確的是( 。

A.有最小值-5、最大值0
B.有最小值-3、最大值6
C.有最小值0、最大值6
D.有最小值2、最大值6

查看答案和解析>>

同步練習(xí)冊答案