已知△ABC是以AB為斜邊的等腰直角三角形,且AC=a,點(diǎn)P在△ABC的三條邊上運(yùn)動(dòng),
(1)求PA+PB+PC的最小值,并說明理由;
(2)比較線段PA+PC與線段PB的大小,并說明理由;
(3)當(dāng)點(diǎn)P在邊AB上(除去A、B兩端點(diǎn))上運(yùn)動(dòng),若要PA、PB、PC三條線段所構(gòu)成銳角三角形,PA的取值范圍是多少,并說明理由.

解:(1)答:PA+PB+PC的最小值為2a.
理由如下:
當(dāng)點(diǎn)P與A重合時(shí),PA+PB+PC=AC+AB
而AB>AC,故PA+PB+PC>2AC=2a
當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí)(不含A、C),PA+PB+PC=AC+PB,而PB>AC,故PA+PB+PC>2a
當(dāng)P與C重合時(shí),PA+PB+PC=AC+CB=2a,可見P在AC運(yùn)動(dòng)時(shí)PA+PB+PC的最小值是2a
同理,當(dāng)點(diǎn)P在線段CB上運(yùn)動(dòng)時(shí),PA+PB+PC的最小值為2a
當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),PA+PB+PC=AB+CP,而當(dāng)CP⊥AB時(shí),CP為最小值,其值為
∴PA+PB+PC=AB+CP≥=
綜上,PA+PB+PC的最小值為2a;

(2)答:當(dāng)P在AC上運(yùn)動(dòng)時(shí)(P與C點(diǎn)不重合),PA+PC<PB
當(dāng)P與C點(diǎn)重合時(shí),PA+PC=PB
當(dāng)P在BC上運(yùn)動(dòng)時(shí)(P與C點(diǎn)不重合),PA+PC>PB
當(dāng)P在AB上運(yùn)動(dòng)時(shí),設(shè)P0在線段AB上,且∠ACP0=15°
當(dāng)P在AP0(不與P0重合時(shí))時(shí),PA+PC<PB,當(dāng)P在P0B(不與P0重合時(shí))時(shí),PA+PC>PB
當(dāng)P與P0重合時(shí),PA+PC=PB,理由如下
當(dāng)P在AC上運(yùn)動(dòng)時(shí)(P與C點(diǎn)不重合),PA+PC=AC=BC<PB
當(dāng)P與C點(diǎn)重合時(shí),PA+PC=AC=BC=PB
當(dāng)P在BC上運(yùn)動(dòng)時(shí)(P與C點(diǎn)不重合),PA>AC=BC,而PB<BC
∴PA+PC>PB
如圖1,在線段AB上取DB=AP0,連接CD,易證△AP0C≌△BDC
則CP0=CD,∠ACP0=∠BCD=15°
∴∠P0CD=60°∴△P0CD是正三角形,即P0D=P0C,因此當(dāng)P與P0重合時(shí),AP+PC=PB
當(dāng)P在AP0(不與P0重合時(shí))時(shí),由于PC-P0C<PP0=AP0-AP
∴PC+PA<P0C+AP0=P0D+DB=P0B<PB;

如圖2,當(dāng)P在BP0(不與P0重合時(shí))時(shí),由于PP0+PC>P0C=P0D
則PP0+PC+AP0>P0C+AP0=P0D+DB=P0B>PB
∴PA+PC>PB;

(3)a<PA<a或a<PA<a.
理由如下:令P1為AB的中點(diǎn),不妨設(shè)P在AP1上運(yùn)動(dòng),要PA、PB、PC三條線段能構(gòu)成三角形,須要PC-PA<PB<PA+PC
易見PB>PC>PA,則PC-PA<PB
由(2)知,要使PA+PC>PB,P應(yīng)在P0B,即∠PCA>15°
因?yàn)锳P0=AP1-P1P0=a-a•cot60°=a-a=a
即PA>
又知當(dāng)P從在PoB上從Po向P1運(yùn)動(dòng)時(shí),PA,PB,PC構(gòu)成的三角形從鈍角變?yōu)橹苯,再變(yōu)殇J角
若設(shè)PA=x,則PB=a-x,PC2=(a)2+(a-x)2=a2-ax+x2
若PA、PB、PC構(gòu)成的三角形是直角三角形,則有PB2=PA2+PC2,即
a-x)2=a2-ax+x2,x2+ax-a2=0,因x>0,所以x=a
所以a<PA<a
同理可說明,當(dāng)P在BP1上運(yùn)動(dòng),要PA、PB、PC三條線段若能構(gòu)成鈍角三角形
須要a<PA<a
綜上可得:a<PA<a或a<PA<a.
分析:(1)由于本題P點(diǎn)的位置不確定,因此要分P與A重合,P在AC上,P與C重合,P在BC上,P在AB上五種情況進(jìn)行討論.主要根據(jù)三角形三邊的關(guān)系進(jìn)行求解;
(2)本題同(1)一樣,也要分類進(jìn)行討論,也是根據(jù)三角形三邊的關(guān)系進(jìn)行求解.要注意的是P在AB上運(yùn)動(dòng)時(shí),由于無法直接用三角形三邊關(guān)系來求解,因此要通過構(gòu)建特殊值來進(jìn)行判斷,以CA、CB為邊C為頂點(diǎn)在兩邊各取一個(gè)15°角,設(shè)與AB的交點(diǎn)為P0和D,那么不難得出△ACP0≌△BCD,因此△P0CD是個(gè)等邊三角形.
當(dāng)P在AP0上運(yùn)動(dòng)時(shí),PA+PC<PA+AP0=PA+BD=PB,綜合可得PA+PC<PB;
當(dāng)P與P0重合時(shí),PC+PA=P0C+P0A=P0D+BD=PB,即PA+PC=PB;
當(dāng)P在P0B上運(yùn)動(dòng)時(shí),PA+PC=P0P+AP0+PC=P0P+PC+BD,由于P0P+PC>P0C=P0D,因此PA+PC=P0P+PC+BD>P0D+BD=PB;
(3)本題要考慮兩種情況:
要使PA,PB,PC構(gòu)成銳角三角形,首先要滿足三邊能組成一個(gè)三角形;
要求出PA,PB,PC構(gòu)成直角三角形時(shí)PA的值;
根據(jù)上面兩種情況求出的PA即可得出PA、PB、PC三條線段所構(gòu)成銳角三角形時(shí)PA的取值范圍.
點(diǎn)評(píng):本題主要考查了等腰直角三角形的性質(zhì)、三角形三邊的關(guān)系、全等三角形的判定等知識(shí)點(diǎn).綜合性強(qiáng),難度大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,以AB為直徑的⊙O經(jīng)過BC的中點(diǎn)D,DE⊥AC于E.
(1)求證:DE是⊙O的切線;
(2)若cosC=
12
,DE=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC是以AB為斜邊的等腰直角三角形,且AC=a,點(diǎn)P在△ABC的三條邊上運(yùn)動(dòng),
(1)求PA+PB+PC的最小值,并說明理由;
(2)比較線段PA+PC與線段PB的大小,并說明理由;
(3)當(dāng)點(diǎn)P在邊AB上(除去A、B兩端點(diǎn))上運(yùn)動(dòng),若要PA、PB、PC三條線段所構(gòu)成銳角三角形,PA的取值范圍是多少,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,直線CD經(jīng)過線段AB的一個(gè)端點(diǎn)B,∠ABC=50°,點(diǎn)P為直線CD上一點(diǎn);已知△PAB是以AB為底邊的等腰三角形,⊙O是以AB為直徑的圓.
(1)用圓規(guī)和直尺在圖中找出點(diǎn)P,并作出⊙O;
(2)用圓規(guī)和直尺過點(diǎn)P作出⊙O的一條切線;
(3)若將將條件“∠ABC=50°”改為“∠ABC=α(0°<α<90°)”討論當(dāng)α在不同范圍內(nèi)時(shí)過點(diǎn)P能作⊙O的切線的條數(shù).(第(1)、(2)小題保留作圖痕跡,不必寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣東省廣州市黃埔區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2003•黃浦區(qū)一模)已知△ABC是以AB為斜邊的等腰直角三角形,且AC=a,點(diǎn)P在△ABC的三條邊上運(yùn)動(dòng),
(1)求PA+PB+PC的最小值,并說明理由;
(2)比較線段PA+PC與線段PB的大小,并說明理由;
(3)當(dāng)點(diǎn)P在邊AB上(除去A、B兩端點(diǎn))上運(yùn)動(dòng),若要PA、PB、PC三條線段所構(gòu)成銳角三角形,PA的取值范圍是多少,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案