【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM,PN分別與OA,OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM,PN分別交AB,BC于E,F(xiàn)兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論:(1)EF=OE;(2)S四邊形OEBF∶S正方形ABCD=1∶4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(5)OG·BD=AE2+CF2,其中正確的是__.
【答案】(1)(2)(3)(5)
【解析】分析:
(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得結(jié)論;
(2)由(1)易證得S四邊形OEBF=S△BOC=S正方形ABCD,則可證得結(jié)論;
(3)由BE=CF,可得BE+BF=BC,然后由等腰直角三角形的性質(zhì),證得BE+BF=OA;
(4)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得答案;
(5)易證得△OEG∽△OBE,然后由相似三角形的對(duì)應(yīng)邊成比例,證得OGOB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論.
【解答】解:(1)∵四邊形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
,
∴△BOE≌△COF(ASA),
∴OE=OF,BE=CF,
∴EF=OE;故正確;
(2)∵S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,
∴S四邊形OEBF:S正方形ABCD=1:4;故正確;
(3)∴BE+BF=BF+CF=BC=OA;故正確;
(4)過點(diǎn)O作OH⊥BC,
∵BC=1,
∴OH=BC=,
設(shè)AE=x,則BE=CF=1﹣x,BF=x,
∴S△BEF+S△COF=BEBF+CFOH=x(1﹣x)+(1﹣x)×=﹣(x﹣)2+,
∵a=﹣<0,
∴當(dāng)x=時(shí),S△BEF+S△COF最大;
即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;故錯(cuò)誤;
(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
∴△OEG∽△OBE,
∴OE:OB=OG:OE,
∴OGOB=OE2,
∵OB=BD,OE=EF,
∴OGBD=EF2,
∵在△BEF中,EF2=BE2+BF2,
∴EF2=AE2+CF2,
∴OGBD=AE2+CF2.故正確.
故答案為:(1),(2),(3),(5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C三點(diǎn)在數(shù)軸上的位置如圖所示,它們表示的數(shù)分別是a,b,c.
(1)填空:abc 0,a+b 0,ab﹣ac 0;(填“>”,“=”或“<”)
(2)若|a|=2且點(diǎn)B到點(diǎn)A,C的距離相等,
①當(dāng)b2=16時(shí),求c的值;
②P是數(shù)軸上B,C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P表示的數(shù)為x,當(dāng)P點(diǎn)在運(yùn)動(dòng)過程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不變,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③(∠α+∠β);④(∠α﹣∠β).正確的有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.
【答案】(1)16種等可能的結(jié)果數(shù),它們是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)
【解析】(1)畫樹狀圖:
共有16種等可能的結(jié)果數(shù),它們是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;
(2)算術(shù)平方根大于4且小于7的結(jié)果數(shù)為6,
所以算術(shù)平方根大于4且小于7的概率==3/8.
【題型】解答題
【結(jié)束】
23
【題目】某高校學(xué)生會(huì)向全校2900名學(xué)生發(fā)起了“愛心一日捐”捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為____,圖①中m的值是____;
(2)求本次你調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時(shí),求y的取值范圍;
(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在太空種子種植體驗(yàn)實(shí)踐活動(dòng)中,為了解“宇番2號(hào)”番茄,某?萍夹〗M隨機(jī)調(diào)查60株番茄的掛果數(shù)量x(單位:個(gè)),并繪制如下不完整的統(tǒng)計(jì)圖表:
“宇番2號(hào)”番茄掛果數(shù)量統(tǒng)計(jì)表
掛果數(shù)量x(個(gè)) | 頻數(shù)(株) | 頻率 |
25≤x<35 | 6 | 0.1 |
35≤x<45 | 12 | 0.2 |
45≤x<55 | a | 0.25 |
55≤x<65 | 18 | b |
65≤x<75 | 9 | 0.15 |
請(qǐng)結(jié)合圖表中的信息解答下列問題:
(1)統(tǒng)計(jì)表中,a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若繪制“番茄掛果數(shù)量扇形統(tǒng)計(jì)圖”,則掛果數(shù)量在“35≤x<45”所對(duì)應(yīng)扇形的圓心角度數(shù)為 °;
(4)若所種植的“宇番2號(hào)”番茄有1000株,則可以估計(jì)掛果數(shù)量在“55≤x<65”范圍的番茄有 株.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)2元一件的小商品,在市場(chǎng)銷售中發(fā)現(xiàn)此商品日銷售單價(jià)x(元)與日銷售量y(件)之間有如下關(guān)系:
x | 3 | 5 | 9 | 11 |
y | 18 | 14 | 6 | 2 |
(1)猜想日銷售量y(件)與日銷售單價(jià)x(元)之間可能存在怎樣函數(shù)關(guān)系式?用你所學(xué)知識(shí)確定y與x之間的函數(shù)關(guān)系式,并驗(yàn)證你的猜想。
(2)設(shè)經(jīng)營(yíng)此商品的日銷售利潤(rùn)為P(元),根據(jù)日銷售規(guī)律:
①試求出日銷售利潤(rùn)P(元)與日銷售單價(jià)x之間的關(guān)系式,并求出日銷售單價(jià)x為多少時(shí),才能獲得最大日銷售利潤(rùn),最大日銷售利潤(rùn)為多少元?
②分別寫出x和P的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E是邊CD上一點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)BE.
(感知)如圖①,過點(diǎn)A作AF⊥BE交BC于點(diǎn)F.易證△ABF≌△BCE.(不需要證明)
(探究)如圖②,取BE的中點(diǎn)M,過點(diǎn)M作FG⊥BE交BC于點(diǎn)F,交AD于點(diǎn)G.
(1)求證:BE=FG.
(2)連結(jié)CM,若CM=1,則FG的長(zhǎng)為 .
(應(yīng)用)如圖③,取BE的中點(diǎn)M,連結(jié)CM.過點(diǎn)C作CG⊥BE交AD于點(diǎn)G,連結(jié)EG、MG.若CM=3,則四邊形GMCE的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com