【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于另一點Q,如果QP=QO,則∠OCP= .
【答案】20或40或100
【解析】試題分析:解:①根據(jù)題意,畫出圖(1),
在△QOC中,OC=OQ,∴∠OQC=∠OCP,
在△OPQ中,QP=QO,∴∠QOP=∠QPO,
又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
整理得,3∠OCP=120°,∴∠OCP=40°.
②當(dāng)P在線段OA的延長線上(如圖2)
∵OC=OQ,∴∠OQP=(180°-∠QOC)×①,
∵OQ=PQ,∴∠OPQ=(180°-∠OQP)×②,
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得:60°+∠QOC=∠OQP,
∵∠OQP=∠QCO,∴∠QOC+2∠OQP=∠QOC+2(60°+∠QOC)=180°,
∴∠QOC=20°,則∠OQP=80°∴∠OCP=100°;
③當(dāng)P在線段OA的反向延長線上(如圖3),
∵OC=OQ,∴∠OCP=∠OQC=(180°-∠COQ)×①,
∵OQ=PQ,∴∠P=(180°-∠OQP)×②,
∵∠AOC=30°,∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④聯(lián)立得∠P=10°,
∴∠OCP=180°-150°-10°=20°.
故答案為:40°、20°、100°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是正方形的對角線上一點,于點,于點,連接.給出下列五個結(jié)論:①;②一定是等腰直角三角形;③一定是等腰三角形;④;⑤.其中正確結(jié)論的序號是( )
A. ①②③④B. ①②④⑤C. ②③④⑤D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
甲、乙兩人同時從相距25千米的A地去B 地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時距他們出發(fā)的時間恰好3小時,求兩人的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把長為20,寬為a的長方形紙片(10<a<20),如圖那樣折一下,剪下一個邊長等于長方形寬度的正方形(稱為第一次操作);再把剩下的長方形如圖那樣折一下,剪下一個邊長等于此時長方形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去,若在第n次操作后,剩下的長方形為正方形,則操作停止.當(dāng)n=3時,a的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=-x+b的圖象與反比例函數(shù)y2= (x>0)的圖象交于A、B兩點,與x軸交于點C,且點A的坐標(biāo)為(1,2),點B的橫坐標(biāo)為3.
(1)在第一象限內(nèi),當(dāng)x取何值時,y1>y2?(根據(jù)圖直接寫出結(jié)果)
(2)求反比例函數(shù)的解析式及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)?/span>(分),且,將其按分數(shù)段分為五組,繪制出以下不完整表格:
組別 | 成績(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
(1)本次決賽共有 名學(xué)生參加;
(2)直接寫出表中a= ,b= ;
(3)請補全下面相應(yīng)的頻數(shù)分布直方圖;
(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點A(m,6)和點B(﹣3,n),直線AB與y軸交于點C.
(1)求直線AB的表達式;
(2)求AC:CB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)商進行商鋪促銷,廣告上寫著如下條款:投資者購買商鋪后,必須由開發(fā)商代租賃5年,5年期滿后由開發(fā)商以比原商鋪標(biāo)價高20%的價格進行回購,投資者可在以下兩種購鋪方案中做出選擇:
方案一:按照商鋪標(biāo)價一次性付清鋪款,每年可獲得的租金為商鋪標(biāo)價的10%;
方案二:按商鋪標(biāo)價的八折一次性付清鋪款,前3年商鋪的租金收益歸開發(fā)商所有,3年后每年可獲得的租金為商鋪標(biāo)價的9%
(1)問投資者選擇哪種購鋪方案,5年后所獲得的投資收益率更高?為什么?
(注:投資收益率=×100%)
(2)對同一標(biāo)價的商鋪,甲選擇了購鋪方案一,乙選擇了購鋪方案二,那么5年后兩人獲得的收益相差7.2萬元.問甲乙兩人各投資了多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com