【題目】如圖,AB,AC是⊙O的兩條切線,B,C為切點(diǎn),連接CO并延長交AB于點(diǎn)D,交⊙O于點(diǎn)E,連接BE,連接AO.
(1)求證:AO∥BE;
(2)若DE=2,tan∠BEO=,求DO的長.
【答案】(1))證明見解析;(2)DO=3.
【解析】
(1)由切線長定理得到OA⊥BC,再由直徑所對的圓周角等于90°,即可得到結(jié)論;
(2)由平行線的性質(zhì)得到∠BEO=∠AOC,設(shè)OC=r,解Rt△AOC,得到AC,OA,cos∠AOC的值,從而得到EB的值.再由△DBE∽△DAO得到對應(yīng)邊成比例,即可得到結(jié)論.
(1)連結(jié)BC.
∵AB,AC是⊙O的兩條切線,B,C為切點(diǎn),∴AB=AC,OA平分∠BAC,∴OA⊥BC,∴∠CFO=90°.
∵CE是⊙O的直徑,∴∠CBE=90°,∴∠CFO=∠CBE,∴ OA∥BE.
(2)∵OA∥BE,∴∠BEO=∠AOC.
∵tan∠BEO=,∴tan∠AOC=.
在Rt△AOC中,設(shè)OC=r,則AC=r,OA=r ,∴cos∠AOC=,∴cos∠BEC= cos∠AOC =,∴EB=r.
∵BE∥OA,∴△DBE∽△DAO,∴,∴,∴DO=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一個(gè)量角器與一張等邊三角形(△ABC)紙片放置成軸對稱圖形,CD⊥AB,垂足為D,半圓(量角器)的圓心與點(diǎn)D重合,此時(shí),測得頂點(diǎn)C到量角器最高點(diǎn)的距離CE=2cm,將量角器沿DC方向平移1cm,半圓(量角器)恰與△ABC的邊AC,BC相切,如圖2,則AB的長為__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小華和小夏玩擲骰子游戲,他們約定:他們用同一枚質(zhì)地均勻的骰子各擲一次, 如果兩次擲的骰子的點(diǎn)數(shù)相同則小華獲勝:如果兩次擲的骰子的點(diǎn)數(shù)的和是6則小夏獲勝.
(1)請您列表或畫樹狀圖列舉出所有可能出現(xiàn)的結(jié)果;
(2)請你判斷這個(gè)游戲?qū)λ麄兪欠窆讲⒄f明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(20,0),點(diǎn)B的坐標(biāo)是(16,0),點(diǎn)C、D在以O(shè)A為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個(gè)三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè))與y軸交于C點(diǎn) .
(1)求拋物線的解析式和A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P是拋物線上B、C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B、C重合),則是否存在一點(diǎn)P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;
(3)若M是拋物線上任意一點(diǎn),過點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),求M點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綿陽某公司銷售統(tǒng)計(jì)了每個(gè)銷售員在某月的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時(shí),為“不稱職”,當(dāng) 時(shí)為“基本稱職”,當(dāng) 時(shí)為“稱職”,當(dāng) 時(shí)為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);
(3)為了調(diào)動(dòng)銷售員的積極性,銷售部決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的銷售員將獲得獎(jiǎng)勵(lì)。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎(jiǎng),月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)期間,某食品店平均每天可賣出300只粽子,賣出1只粽子的利潤是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣出100只粽子.為了使每天獲取的利潤更多,該店決定把零售單價(jià)下降m(0<m<1)元.
(1)零售單價(jià)下降m元后,該店平均每天可賣出_____只粽子,利潤為_____元.
(2)在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使該店每天獲取的利潤是420元并且賣出的粽子更多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com