【題目】如圖,已知拋物線C1和C2都經(jīng)過原點,頂點分別為A,B,與x軸的另一交點分別為M,N,如果點A與點B,點M與點N都關于原點O成中心對稱,則稱拋物線C1和C2為姐妹拋物線,請你寫出一對姐妹拋物線C1和C2,使四邊形ANBM恰好是矩形,你所寫的一對拋物線解析式是

【答案】答案不唯一,如:,

【解析】

試題分析:連接AB,根據(jù)姐妹拋物線的定義,可得姐妹拋物線的二次項的系數(shù)互為相反數(shù),一次項系數(shù)相等且不等于零,常數(shù)項都是零,設拋物線C1的解析式為,根據(jù)四邊形ANBM恰好是矩形可得:OA=OM,OA=MA,∴△AOM是等邊三角形,設OM=2,則點A的坐標是(1,),則,解得:,則拋物線C1的解析式為,拋物線C2的解析式為,故答案為:,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AD=AE,BD=CE,∠ADB=AEC=100°,∠BAE=70°,下列結論錯誤的是(
A.△ABE≌△ACD
B.△ABD≌△ACE
C.∠C=30°
D.∠DAE=40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們將在直角坐標系中圓心坐標和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是(

A.6 B.8 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的 倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)

進價(元/件)

20

30

售價(元/件)

29

40


(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】α是銳角,若sinαcos15°,則α_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若五條線段的長分別是1cm,2cm,3cm,4cm,5cm,則以其中三條線段為邊可構成______個三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關系如何,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC在平面直角坐標系中的位置如圖所示.A、B、C三點在格點上.

(1)作出△ABC關于x軸對稱的△A1B1C1 , 并寫出點C1的坐標;
(2)作出△ABC關于y對稱的△A2B2C2 , 并寫出點C2的坐標.

查看答案和解析>>

同步練習冊答案