【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個(gè)數(shù)為(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】C
【解析】解:由題意得:a<0,c>0,﹣ =1>0, ∴b>0,即abc<0,選項(xiàng)①錯(cuò)誤;
﹣b=2a,即2a+b=0,選項(xiàng)②正確;
當(dāng)x=1時(shí),y=a+b+c為最大值,
則當(dāng)m≠1時(shí),a+b+c>am2+bm+c,即當(dāng)m≠1時(shí),a+b>am2+bm,選項(xiàng)③正確;
由圖象知,當(dāng)x=﹣1時(shí),ax2+bx+c=a﹣b+c<0,選項(xiàng)④錯(cuò)誤;
∵ax12+bx1=ax22+bx2
∴ax12﹣ax22+bx1﹣bx2=0,(x1﹣x2)[a(x1+x2)+b]=0,
而x1≠x2 ,
∴a(x1+x2)+b=0,
∴x1+x2=﹣ =﹣ =2,所以⑤正確.
所以②③⑤正確,共3項(xiàng),
故選C.
根據(jù)拋物線開口向下,對稱軸在y軸右側(cè),以及拋物線與坐標(biāo)軸的交點(diǎn),結(jié)合圖象即可作出判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°, = ,點(diǎn)D在OB上,點(diǎn)E在OB的延長線上,當(dāng)正方形CDEF的邊長為2 時(shí),則陰影部分的面積為(
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在三角形ABC中,點(diǎn)D在BC上,DE⊥AB于E,點(diǎn)F在AB上,在CF的延長線上取一點(diǎn)G,連接AG.

(1)如圖1,若∠GAB=∠B,∠GAC+∠EDB=180°,求證:AB⊥AC.

(2)如圖2.在(1)的條件下,∠GAC的平分線交CG于點(diǎn)M,∠ACB的平分線交AB于點(diǎn)N,當(dāng)∠AMC-∠ANC=35°時(shí),求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實(shí)數(shù)a,我們規(guī)定:用符號(hào)[]表示不大于的最大整數(shù),稱[]a的根整數(shù),例如:[]=3,[]=3

1)仿照以上方法計(jì)算:[] =   ;[] =   

2)若[]=1,寫出滿足題意的x的整數(shù)值   

如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2 []=3[]=1,這時(shí)候結(jié)果為1

3)對100連續(xù)求根整數(shù),   次之后結(jié)果為1

4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).

(1)求拋物線的解析式
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,請直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由.
(3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△CBF的面積最大?請求出△CBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,點(diǎn)DBC中點(diǎn),ANABC外角∠CAM的平分線,CEAN,垂足為點(diǎn)E.求證:四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是放在水平地面上的一把椅子的側(cè)面圖,椅子高為AC,椅面寬為BE,椅腳高為ED,且AC⊥BE,AC⊥CD,AC∥ED.從點(diǎn)A測得點(diǎn)D、E的俯角分別為64°和53°.已知ED=35cm,求椅子高AC約為多少?
(參考數(shù)據(jù):tan53°≈ ,sin53°≈ ,tan64°≈2,sin64°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品共用了160元.

(1)求A,B兩種商品每件多少元?

(2)如果小亮準(zhǔn)備購買A,B兩種商品共10件,總費(fèi)用不超過350元,且不低于300元,問有幾種購買方案,哪種方案費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

(1)求證:四邊形AECF是平行四邊形;

(2)若BAC=90°,AC平分EAF,且BC=8cm,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案