(2011•南京)【問題情境】已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
【數(shù)學(xué)模型】

設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2(x+)(x>0).
【探索研究】(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+(x>0)的圖象和性質(zhì).
①填寫下表,畫出函數(shù)的圖象;

x




1
2
3
4

y

 
 
 
 
 
 
 

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=x+(x>0)的最小值
【解決問題】
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.

解:(1)①答案為:,,2,,,
函數(shù)y=x+的圖象如圖:

②答:函數(shù)兩條不同類型的性質(zhì)是:當(dāng)0<x<1時,y 隨x的增大而減小,當(dāng)x>1時,y 隨x的增大而增大;當(dāng)x=1時,函數(shù)y=x+(x>0)的最小值是1.
③解:y=x+=+﹣2+2,
=+2,
當(dāng)=0,即x=1時,函數(shù)y=x+(x>0)的最小值是2,
答:函數(shù)y=x+(x>0)的最小值是2.
(2)答:矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為時,它的周長最小,最小值是4

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南京)【問題情境】已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最小?最小值是多少?
【數(shù)學(xué)模型】

設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2(x+)(x>0).
【探索研究】(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+(x>0)的圖象和性質(zhì).
①填寫下表,畫出函數(shù)的圖象;
x




1
2
3
4

y

 
 
 
 
 
 
 

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=x+(x>0)的最小值
【解決問題】
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

同步練習(xí)冊答案