【題目】如圖所示,方格紙中的每個小方格都是邊長為1的正方形,Rt△ABC的項點均在格點上.A(﹣6,1)B(﹣3,1)C(﹣3,3)

(1)將Rt△ABC沿x軸正方向平移5個單位長度后得到Rt△A1B1C1 . 試在圖中畫出Rt△A1B1C1 , 并寫出C1點的坐標;
(2)將Rt△ABC繞點B順時針旋轉(zhuǎn)90°后得到Rt△A2B2C2 . 試在圖中畫出Rt△A2B2C2

【答案】
(1)解:如圖,RT△A1B1C1為所作,點C1的坐標為(2,3)


(2)解:如圖,Rt△A2B2C2即為所作.


【解析】(1)把A、B、C的橫坐標都加上5,縱坐標不變即可得到A1、B1、C1的坐標,然后描點即可得到RT△A1B1C1;(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點A、B、C的對應點A2、B2、C2即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙A與x軸相交于C(﹣2,0),D(﹣8,0)兩點,與y軸相切于點B(0,4).

(1)求經(jīng)過B,C,D三點的拋物線的函數(shù)表達式;
(2)設拋物線的頂點為E,證明:直線CE與⊙A相切;
(3)在x軸下方的拋物線上,是否存在一點F,使△BDF面積最大,最大值是多少?并求出點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)x2+2x=0;
(2)x2-x-1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,規(guī)定把一個點先繞原點逆時針旋轉(zhuǎn)45°,再作出旋轉(zhuǎn)后的點關于原點的對稱點,這稱為一次變換,已知點A的坐標為(﹣1,0),則點A經(jīng)過連續(xù)2016次這樣的變換得到的點A2016的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ABCD中,點E為AD的中點,連接BE,交AC于點F,則AF:CF=(

A.1:2
B.1:3
C.2:3
D.2:5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=x+4與兩坐標軸分別交于A,B兩點,⊙C的圓心坐標為(2,O),半徑為2,若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值和最大值分別是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】M為雙曲線y= 上的一點,過點M作x軸、y軸的垂線,分別交直線y=﹣x+m于點D,C兩點,若直線y=﹣x+m與y軸交于點A,與x軸相交于點B.

(1)求ADBC的值.
(2)若直線y=﹣x+m平移后與雙曲線y= 交于P、Q兩點,且PQ=3 ,求平移后m的值.
(3)若點M在第一象限的雙曲線上運動,試說明△MPQ的面積是否存在最大值?如果存在,求出最大面積和M的坐標;如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別是BC,DC上的一個動點,以EF為對稱軸折疊△CEF,使點C的對稱點G落在AD上,若AB=3,BC=5,則CF的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與解分式方程.
(1)

(2)

查看答案和解析>>

同步練習冊答案