【題目】在平面直角坐標(biāo)系中,已知直線與雙曲線的一個(gè)交點(diǎn)是.
(1)求的值;
(2)設(shè)點(diǎn)是雙曲線上不同于的一點(diǎn),直線與軸交于點(diǎn).
①若,求的值;
②若,結(jié)合圖象,直接寫出的值.
【答案】(1).(2)①;②或.
【解析】
(1)由直線解析式求得A(2,1),然后代入雙曲線y=中,即可求得k的值;
(2)①根據(jù)系數(shù)k的幾何意義即可求得n的值,得到P的坐標(biāo),繼而求得直線PA的解析式,代入B(b,0)即可求得b的值;②分兩種情況討論求得即可.
(1)∵直線y=x與雙曲線y=的一個(gè)交點(diǎn)是A(2,a),
∴a=×2=1,
∴A(2,1),
∴k=2×1=2;
(2)①若m=1,則P(1,n),
∵點(diǎn)P(1,n)是雙曲線y=上不同于A的一點(diǎn),
∴n=k=2,
∴P(1,2),
∵A(2,1),
則直線PA的解析式為y=-x+3,
∵直線PA與x軸交于點(diǎn)B(b,0),
∴0=-b+3,
∴b=3;
②如圖1,當(dāng)P在第一象限時(shí),
∵PB=2AB,A(2,1),
∴P點(diǎn)的縱坐標(biāo)時(shí)2,
代入y=求得x=1,
∴P(1,2),
由①可知,此時(shí)b=3;
如圖2,當(dāng)P在第,三象限時(shí),
∵PB=2AB,A(2,1),
∴P點(diǎn)的縱坐標(biāo)時(shí)-2,
代入y=求得x=-1,
∴P(-1,-2),
∵A(2,1)
則直線PA的解析式為y=x-1,
∴b=1,
綜上,b的值為3或1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張長(zhǎng)為8cm,寬為6cm的長(zhǎng)方形紙片上,現(xiàn)要剪下一個(gè)腰長(zhǎng)為5cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與長(zhǎng)方形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在長(zhǎng)方形的邊上).則剪下的等腰三角形的底邊長(zhǎng)可以是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x和縱坐標(biāo)y的對(duì)應(yīng)值如下表,則下列說(shuō)法中正確的有_______.(填序號(hào))
x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
y | … | -37 | -21 | -9 | -1 | 3 | 3 | … |
①當(dāng)x>1時(shí),y隨x的增大而減。 ②拋物線的對(duì)稱軸為直線x=-.
③當(dāng)x=2時(shí),y=-9. ④方程ax2+bx+c=0一個(gè)正數(shù)解滿足1<<2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開(kāi)時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過(guò)閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A在直線l上,以A為圓心,OA為半徑的圓與y軸的另一個(gè)交點(diǎn)為E.給出如下定義:若線段OE,⊙A和直線l上分別存在點(diǎn)B,點(diǎn)C和點(diǎn)D,使得四邊形ABCD是矩形(點(diǎn)A,B,C,D順時(shí)針排列),則稱矩形ABCD為直線l的“位置矩形”.
例如,圖中的矩形ABCD為直線l的“位置矩形”.
(1)若點(diǎn)A(-1,2),四邊形ABCD為直線x=-1的“位置矩形”,則點(diǎn)D的坐標(biāo)為 ;
(2)若點(diǎn)A(1,2),求直線y=kx+1(k≠0)的“位置矩形”的面積;
(3)若點(diǎn)A(1,-3),直線l的“位置矩形”面積的最大值為 ,此時(shí)點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AE=10cm,∠B=∠EAC,則AC的長(zhǎng)為( 。
A. 5cm B. 5cm C. 5 cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:
如圖1,中,,于點(diǎn),且;如圖2,在圖1的基礎(chǔ)上,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒的速度沿線段向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同速度沿線段向點(diǎn)運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另外一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒.
(1)求的長(zhǎng);
(2)當(dāng)的其中一邊與平行時(shí)(與不重合),求的值;
(3)點(diǎn)在線段上運(yùn)動(dòng)的過(guò)程中,是否存在以為腰的是等腰三角形?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com