【題目】將一副三角板按如圖方式擺放,兩個(gè)直角頂點(diǎn)重合,∠A=60°,∠E=∠B=45°.
(1)求證:∠ACE=∠BCD;
(2)猜想∠ACB與∠ECD數(shù)量關(guān)系并說明理由;
(3)按住三角板ACD不動(dòng),繞點(diǎn)C旋轉(zhuǎn)三角板ECB,探究當(dāng)∠ACB等于多少度時(shí),AD∥CB.請(qǐng)?jiān)趥溆脠D中畫出示意圖并簡(jiǎn)要說明理由.
【答案】(1)證明見解析;(2)猜想:∠ACB+∠ECD=180°.理由見解析;(3)當(dāng)∠ACB=120°或60°時(shí),AD∥CB.理由理由見解析.
【解析】試題分析:
(1)由∠ACD=∠BCE=90°,可得∠ACD-∠DCE=∠BCE-∠DCE,從而可得∠ACE=∠BCD;
(2)猜想:∠ACB+∠ECD=180°.由∠ACB+∠ECD=∠ACD+∠BCD+∠ECD=∠ACD+∠BCE=90°+90°=180°可得結(jié)論;
(3)如下圖,因?yàn)椤?/span>A=60°,根據(jù)“同旁內(nèi)角互補(bǔ),兩直線平行和內(nèi)錯(cuò)角相等,兩直線平行”可知,當(dāng)∠ACB=120°,或∠ACB=60°時(shí),AD∥BC.
試題解析:
(1)∵∠ACD=∠ECB=90°,
∴∠ACD﹣∠ECD=∠ECB﹣∠ECD,
即∠ACE=∠BCD.
(2)猜想:∠ACB+∠ECD=180°.理由如下:
∵∠ACB=∠ACD+∠DCB
∴∠ACB+∠ECD
=∠ACD+∠DCB+∠ECD
又∵∠DCB+∠ECD=∠ECB,
∴∠ACB+∠ECD=∠ACD+∠ECB=90°+90°=180°.
(3)當(dāng)∠ACB=120°或60°時(shí),AD∥CB.理由如下:
①如圖1,根據(jù)“同旁內(nèi)角互補(bǔ),兩直線平行”:
當(dāng)∠A+∠ACB=180°時(shí),AD∥BC,
此時(shí),∠ACB=180°﹣∠A=180°﹣60°=120°.
②如圖2,根據(jù)“內(nèi)錯(cuò)角相等,兩直線平行”:
當(dāng)∠ACB=∠A=60°時(shí),AD∥BC.
綜上所述,當(dāng)∠ACB=120°或60°時(shí),AD∥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.
(1) 求出y與x之間的函數(shù)關(guān)系式;
(2) y與x之間是什么函數(shù)關(guān)系? 并在平面直角坐標(biāo)系中畫出該函數(shù)的圖像;
(3) 當(dāng)x=2.5時(shí),y的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)a在數(shù)軸上表示的點(diǎn)在原點(diǎn)左側(cè),距離原點(diǎn)3個(gè)單位長(zhǎng),b在數(shù)軸上表示的點(diǎn)在原點(diǎn)右側(cè),距離原點(diǎn)2個(gè)單位長(zhǎng),c和d互為倒數(shù),m與n互為相反數(shù),y為最大的負(fù)整數(shù),求(y+b)2+m(a-cd)-nb2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,點(diǎn)C是直徑AB延長(zhǎng)線上一點(diǎn),過點(diǎn)C作⊙O的切線,切點(diǎn)為D,連結(jié)BD.
(1)求證:∠A=∠BDC;
(2)若CM平分∠ACD,且分別交AD、BD于點(diǎn)M、N,當(dāng)DM=1時(shí),求MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓,,點(diǎn)D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com