解:(1)證明:∵四邊形ABCD為正方形,
∴∠B=∠C=90°,
∵∠AMB+∠BAM=90°,又∴AM⊥MN,
∴∠AMN=90°,∴∠AMB+∠NMC=90°,
∴∠BAM=∠NMC,∴Rt△ABM∽R(shí)t△MCN;
(2)AM=PM.證明:∵四邊形ABCD為正方形,
∴AB=BC,∠B=∠BCD=90°,∴AH=MC,
∵BH=BM,
∴∠BMH=∠BHM=45°,
∠AHM=135°,∵AM⊥MN,∴∠2+∠3+∠BMH=90°,
∵∠2+∠3=45°,∴∠1+∠2=∠BHM=45°,∴∠1=∠3,
∵CP是正方形外角平分線,∴∠PCN=45°,
∴∠PCM=90°+45°=135°,
∴∠AHM=∠MCP,在△AHM和△MCP中,
∵,
∴△AHM∽△MCP(ASA),
∴AM=PM;
(3)解:∵正方形ABCD邊長(zhǎng)為4,BM=1,
∴CM=4-1=3,
∵Rt△ABM∽R(shí)t△MCN,∴,即,
∴CN=,
∴S梯形ABCN=(AB+CN)BC=×(4+)×4=;
∴正方形ABCD邊長(zhǎng)為4,BM=x,∴CM=4﹣x,
∴Rt△ABM∽R(shí)t△MCN,∴,即,∴CN=,
∴y=S梯形ABCN=(AB+CN)BC=×(4+)×4=﹣x2+2x+8=﹣(x﹣2)2+10,
∵當(dāng)x=2時(shí),四邊形ABCN的面積最大,最大面積為10;
(4)解:∵∠B=∠AMN=90°,
∴要使Rt△ABM∽R(shí)t△AMN,必須有,即,
∵Rt△ABM∽R(shí)t△MCN,
∴,∴BM=MC,
∴當(dāng)點(diǎn)M運(yùn)動(dòng)到BC的中點(diǎn)時(shí),Rt△ABM∽R(shí)t△AMN,此時(shí)BM=2
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com