【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績分別被制成下列兩個(gè)統(tǒng)計(jì)圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

a

7

7

1.2

7

b

8

c


(1)寫出表格中a,b,c的值;
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡要分析這兩名隊(duì)員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?

【答案】
(1)解:甲的平均成績a= =7(環(huán)),

∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,

∴乙射擊成績的中位數(shù)b= =7.5(環(huán)),

其方差c= ×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]

= ×(16+9+1+3+4+9)

=4.2(環(huán))


(2)解:從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;

綜合以上各因素,若選派一名學(xué)生參加比賽的話,可選擇乙參賽,因?yàn)橐耀@得高分的可能更大


【解析】(1)利用平均數(shù)的計(jì)算公式直接計(jì)算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計(jì)算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點(diǎn)進(jìn)行分析.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的相關(guān)知識可以得到問題的答案,需要掌握能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況;能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請用直尺和圓規(guī)在所給的兩個(gè)矩形中各作一個(gè)不為正方形的菱形,且菱形的四個(gè)頂點(diǎn)都在矩形的邊上,面積相同的圖形視為同一種.(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,一次函數(shù)y=kx﹣k與反比例函數(shù)y= (k≠0)的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=75°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′=(

A.30°
B.35°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是(
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;
④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2 時(shí),菱形ABCD的邊長為2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),AE和BF交于點(diǎn)P.如圖,點(diǎn)點(diǎn)同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點(diǎn)C;且∠ACB=60°時(shí),有以下兩個(gè)結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時(shí):

(1)點(diǎn)點(diǎn)發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點(diǎn)Q為線段AE上一點(diǎn),QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負(fù)方向以每秒1個(gè)單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時(shí)間為t,m與t的函數(shù)圖象如圖2所示.

(1)點(diǎn)A的坐標(biāo)為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知在⊙O中,點(diǎn)C為劣弧AB上的中點(diǎn),連接AC并延長至D,使CD=CA,連接DB并延長DB交⊙O于點(diǎn)E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖2,連接EC,⊙O半徑為5,AC的長為4,求陰影部分的面積之和.(結(jié)果保留π與根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個(gè)邊長為2cm的正方形,使不規(guī)則區(qū)域落在正方形內(nèi),現(xiàn)向正方形內(nèi)隨機(jī)投擲小石子(假設(shè)小石子落在正方形內(nèi)每一點(diǎn)都是等可能的),經(jīng)過大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.25附近,由此可估計(jì)不規(guī)則區(qū)域的面積是m2

查看答案和解析>>

同步練習(xí)冊答案