【題目】在中,分別是邊上的點(diǎn),和交于點(diǎn),且.
(1)如圖,求證:;
(2)如圖,過(guò)點(diǎn)作,交于點(diǎn) ,求證;
(3)如圖,在(2)的條件下,,求線段的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】
(1)根據(jù)三角形內(nèi)角和定理可得∠ECF+∠CFE+∠CEF=180°,,由且是公共角即可證明(2)根據(jù)銳角互余的關(guān)系可得,根據(jù)及外角性質(zhì)可得∠CAB=∠CGA,進(jìn)而可得AC=CG;(3)過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),根據(jù)等腰直角三角形的性質(zhì)可得進(jìn)而可得AG=2MC,由∠HAB=90°,∠CAB=45°可得平分,由可得CM=CN,根據(jù)四邊形內(nèi)角和及平角的定義可得,利用AAS可證明△HNC≌△CMD,即可證明CD=CH,根據(jù)已知即可證明AE=HE,根據(jù)(1)得,由可得∠AEC=∠H,可得AE=AH,進(jìn)而可得,在中,可得∠B=30°,根據(jù)含30°角的直角三角形性質(zhì)可知,根據(jù)面積公式可得,即可求出CM的值,進(jìn)而根據(jù)可得BC的長(zhǎng).
(1)在中,∠ECF+∠CFE+∠CEF=180°,
在中,
且是公共角
∴∠CEF=∠CDB
即
(2),
∴∠DCB=∠ACG=90°,
∴
即
∵∠ACD+∠B=∠CAB,
∴∠GCB+∠B=∠CAB,
∵∠CGA=∠GCB+∠B,
∴∠CAB=∠CGA,
∴AC=GC
(3)如圖,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn)
且
∴∠CAG=∠CGA=45°,,
∴,
∴
∴
∵
∴,
∵∠CAG=45°,
∴∠CAH=∠CAG,
平分,
∵,
∴,
∵,
∴,
在四邊形中,,
∴,
∵,
∴,
又,,,
∴,
∴AE=AH,
∵,CM=CN,∠HNC=∠CMD,
∴△HNC≌△CMD,
∴CD=CH,
∵CE+CD=AE,
∴CE+CH=AE=EH
∴AE=EH=HA,
∴∠H=60°,
在中,
∴∠B=30°,
在中,
∴,
∵,
∴,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠A=∠1,∠2+∠3=180°,∠BDE=65°,
(1)AB與DF平行嗎?說(shuō)明理由;
(2)求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),與x軸相交于點(diǎn)C.已知tan∠BOC= ,點(diǎn)B的坐標(biāo)為(m,n).
(1)求反比例函數(shù)的解析式;
(2)請(qǐng)直接寫(xiě)出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,王老師說(shuō):“是無(wú)理數(shù),無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),同學(xué)們,你能把的小數(shù)部分全部寫(xiě)出來(lái)嗎?”大家議論紛紛,小剛同學(xué)說(shuō):“要把它的小數(shù)部分全部寫(xiě)出來(lái)是非常難的,但我們可以用表示它的小數(shù)部分.”王老師說(shuō):“小剛同學(xué)的說(shuō)法是正確的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.”請(qǐng)你解答:已知8+=x+y,其中x是一個(gè)整數(shù),且0<y<1,請(qǐng)你求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)的坐標(biāo)分別為,.
(1)在圖中畫(huà)出關(guān)于軸的對(duì)稱圖形;
(2)在圖中的軸上找一點(diǎn),使的值最。ūA糇鲌D痕跡),并直接寫(xiě)出點(diǎn)的坐標(biāo);
(3)在圖中的軸上找一點(diǎn),使的值最。ūA糇鲌D痕跡),并直接寫(xiě)出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請(qǐng)完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴________∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm.點(diǎn)P從點(diǎn)A出發(fā)沿AB方向向點(diǎn)B運(yùn)動(dòng),速度為1cm/s,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿B→C→A方向向點(diǎn)A運(yùn)動(dòng),速度為2cm/s.當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),△APC為等腰三角形.
(2)當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng)時(shí),△PBQ的面積為S(cm2),寫(xiě)出S與t之間的函數(shù)關(guān)系.
(3)當(dāng)點(diǎn)Q在線段BC上運(yùn)動(dòng)時(shí),是否存在某一時(shí)刻t,使S△PBQ:S四邊形APQC=5:3?若存在,求出t值;若不存在,說(shuō)明理由.
(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使BQ平分∠ABC?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問(wèn)題解決:
如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問(wèn)題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com