【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內(nèi)的交點(diǎn)R,與x軸、y軸的交點(diǎn)分別為P、Q.過(guò)R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于 .
【答案】2
【解析】解:∵y=kx﹣2,
∴當(dāng)x=0時(shí),y=﹣2,
當(dāng)y=0時(shí),kx﹣2=0,解得x= ,
所以點(diǎn)P( ,0),點(diǎn)Q(0,﹣2),
所以O(shè)P= ,OQ=2,
∵RM⊥x軸,
∴△OPQ∽△MPR,
∵△OPQ與△PRM的面積相等,
∴△OPQ與△PRM的相似比為1,即△OPQ≌△MPR,
∴OM=2OP= ,RM=OQ=2,
所以點(diǎn)R( ,2),
∵雙曲線 經(jīng)過(guò)點(diǎn)R,
∴ =2,即k2=8,
解得k1=2 ,k2=﹣2 (舍去).
故答案為:2 .
根據(jù)△OPQ與△PRM相似以及它們面積相等,可以得到兩三角形全等,再根據(jù)一次函數(shù)求出點(diǎn)P、Q的坐標(biāo),進(jìn)而得到OP、OQ的長(zhǎng)度,再根據(jù)三角形全等表示出點(diǎn)R的坐標(biāo),代入反比例函數(shù)表達(dá)式,解方程即可求得k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用高為6cm,底面直徑為4cm的圓柱A的側(cè)面積展開(kāi)圖,再圍成不同于A的另一個(gè)圓柱B,則圓柱B的體積為( )
A.24πcm3
B.36πcm3
C.36cm3
D.40cm3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4),C(2,0).將矩形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)135°,得到矩形EFGH(點(diǎn)E與O重合).
(1)若GH交y軸于點(diǎn)M,則∠FOM=°,OM=;
(2)將矩形EFGH沿y軸向上平移t個(gè)單位.
①直線GH與x軸交于點(diǎn)D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個(gè)平方單位,試求當(dāng)0<t≤4 ﹣2時(shí),S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的中線,以AD為直徑作⊙O,連接BO并延長(zhǎng)至點(diǎn)E,使得OE=OB,交⊙O于點(diǎn)F,連接AE,CE.
(1)求證:AE是⊙O的切線;
(2)求證:四邊形ADCE是矩形;
(3)若BD= AD=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形MNEF的四個(gè)頂點(diǎn)分在大圓O上,小圓O與正方形各邊都相切,AB與CD是大圓O的直徑,AB⊥CD,CD⊥MN,小明隨意向水平放置的該圓形區(qū)域內(nèi)拋一個(gè)小球,則小球停在該圖中陰影部分區(qū)域的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.
(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫(xiě)結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(2,0)和B(t,0)(t≥2),與y軸交于點(diǎn)C,直線l:y=x+2t經(jīng)過(guò)點(diǎn)C,交x軸于點(diǎn)D,直線AE交拋物線于點(diǎn)E,且有∠CAE=∠CDO,作CF⊥AE于點(diǎn)F.
(1)求∠CDO的度數(shù);
(2)求出點(diǎn)F坐標(biāo)的表達(dá)式(用含t的代數(shù)式表示);
(3)當(dāng)S△COD﹣S四邊形COAF=7時(shí),求拋物線解析式;
(4)當(dāng)以B,C,O三點(diǎn)為頂點(diǎn)的三角形與△CEF相似時(shí),請(qǐng)直接寫(xiě)出t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com