【題目】(1)如圖(1),將一個長為4a,寬為2b的長方形,沿圖中虛線均勻分成4個小長方形,然后按圖(2)形狀拼成一個正方形.

①圖(2)中的空白部分的邊長是多少?(用含a,b的式子表示)

②觀察圖(2),用等式表示出,ab和的數(shù)量關(guān)系;

2)如圖所示,在△ABC與△DCB中,AC與BD相交于點E,且∠A=∠D,AB=DC.求證:△ABE≌△DCE;

【答案】1)①2a-b;②=-8ab;(2)見解析

【解析】

1)①先計算空白正方形的面積,再求邊長;

②利用等量關(guān)系式S空白=S大正方形-4S長方形代入即可;

2)分析題意,根據(jù)∠A=D,AB=DC以及對頂角就可證明兩三角形全等.

1)①∵圖(2)中的空白部分的面積=-4a×2b=4+4ab+-8ab=

∴圖(2)中的空白部分的邊長是:2a-b;

②∵S空白=S大正方形-4S長方形,

=-4×2a×b,

=-8ab;

(2) 證明: ∵在ABEDCE中,

∴△ABE≌△DCE;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A點的坐標為(03),B點的坐標為(-3.0),Dx軸上的一個動點,AEAD,且AE=AD,連接BEy軸于點M

1)若D點的坐標為(-5.0),求E點的坐標:

2)求證:MBE的中點

3)當D點在x軸上運動時,探索:為定值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD相交于點O,若BE平分∠ABDCDF,CE平分∠ACDABG,∠A=45°,∠BEC=40°,則∠D的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,AB兩點同時從原點O出發(fā),點A以每秒x個單位長度沿x軸的負方向運動,點B以每秒y個單位長度沿y軸的正方向運動.

1)若|x+2y-10|+|2x-y|=0,試分別求出1秒鐘后AOB的面積;

2)如圖2,所示,設(shè)∠BAO的鄰補角和∠ABO的鄰補角的平分線相交于點P,問:點A、B在運動的過程中,∠P的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由;

3)如圖3所示,延長BAE,在∠ABO的內(nèi)部作射線BFx軸于點C,若∠EAC、∠FCA、∠ABC的平分線相交于點G,過點GBE的垂線,垂足為H,設(shè)∠AGH=α,∠BGC=β,試探究出αβ滿足的數(shù)量關(guān)系并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正三角形ABC中,已知點P是三角形內(nèi)任意一點,則點P到三角形三邊距離之和PD+PE+PF的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC中,BAC=90°,AB=AC,點EABC內(nèi)一點,連接AECE,CEAE,過點BBDAE,交AE的延長線于D

1)如圖1,求證BD=AE

2)如圖2,點HBC中點,分別連接EH,DH,求EDH的度數(shù);

3)如圖3,在(2)的條件下,點MCH上的一點,連接EM,點FEM的中點,連接FH,過點DDGFH,交FH的延長線于點G,若GHFH=65,FHM的面積為30,EHB=∠BHG,求線段EH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在今年年初,新型冠狀病毒在武漢等地區(qū)肆虐,為了緩解湖北地區(qū)的疫情,全國各地的醫(yī)療隊員都紛紛報名支援湖北,某方艙醫(yī)院需要8組醫(yī)護人員支援,要求每組分配的人數(shù)相同,若按每組人數(shù)比預(yù)定人數(shù)多分配1人,則總數(shù)會超過100人,若每組人數(shù)比預(yù)定人數(shù)少分配一人,則總數(shù)不夠90人,那么預(yù)定每組分配的人數(shù)是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】安慶市在精準扶貧活動中,因地制宜指導(dǎo)農(nóng)民調(diào)整種植結(jié)構(gòu),增加種植效益,2018年李大伯家在工作隊的幫助下,計劃種植馬鈴薯和蔬菜共15畝,預(yù)計每畝的投入與產(chǎn)出如下表:(每畝產(chǎn)出-每畝投入=每畝純收入)

種類

投入(元)

產(chǎn)出(元)

馬鈴薯

1000

4500

蔬菜

1200

5300

1)如果這15畝地的純收入要達到54900元,需種植馬鈴薯和蔬菜各多少畝?

2)如果總投入不超過16000元,則最多種植蔬菜多少畝?該情況下15畝地的純收入是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.

1)求甲、乙兩種商品每件的價格各是多少元?

2)計劃購買這兩種商品共50件,且投入的經(jīng)費不超過3200元,那么最多購買多少件甲種商品?

查看答案和解析>>

同步練習(xí)冊答案