(2007•哈爾濱)如圖,用一段長(zhǎng)為30米的籬笆圍成一個(gè)一邊靠墻(墻的長(zhǎng)度不限)的矩形菜園ABCD,設(shè)AB邊長(zhǎng)為x米,則菜園的面積y(米2)與x(米)的關(guān)系式為    .(不要求寫(xiě)出自變量x的取值范圍)
【答案】分析:由AB邊長(zhǎng)為x米根據(jù)已知可以推出BC=(30-x),然后根據(jù)矩形的面積公式即可求出函數(shù)關(guān)系式.
解答:解:∵AB邊長(zhǎng)為x米,
而菜園ABCD是矩形菜園,
∴BC=(30-x),
菜園的面積=AB×BC=(30-x)•x,
∴y=-x2+15x.
故填空答案:y=-x2+15x.
點(diǎn)評(píng):此題首先利用矩形的周長(zhǎng)公式用x表示BC,然后利用矩形的面積公式即可解決問(wèn)題,本題的難點(diǎn)在于得到BC長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•哈爾濱)如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點(diǎn)E,點(diǎn)C(4,-2),點(diǎn)D(1,2),BC=9,sin∠ABC=
(1)求直線AB的解析式;
(2)若點(diǎn)H的坐標(biāo)為(-1,-1),動(dòng)點(diǎn)G從B出發(fā),以1個(gè)單位/秒的速度沿著B(niǎo)C邊向C點(diǎn)運(yùn)動(dòng)(點(diǎn)G可以與點(diǎn)B或點(diǎn)C重合),求△HGE的面積S(S≠0)隨動(dòng)點(diǎn)G的運(yùn)動(dòng)時(shí)間t′秒變化的函數(shù)關(guān)系式(寫(xiě)出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)秒時(shí),點(diǎn)G停止運(yùn)動(dòng),此時(shí)直線GH與y軸交于點(diǎn)N.另一動(dòng)點(diǎn)P開(kāi)始從B出發(fā),以1個(gè)單位/秒的速度沿著梯形的各邊運(yùn)動(dòng)一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點(diǎn)P可以與梯形的各頂點(diǎn)重合).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)M為直線HE上任意一點(diǎn)(點(diǎn)M不與點(diǎn)H重合),在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,求出所有能使∠PHM與∠HNE相等的t的值.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(03)(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(-3,-6),則這個(gè)反比例函數(shù)的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•哈爾濱)函數(shù)y=的自變量x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案