如下圖,已知、兩點的坐標(biāo)分別是(,0)(0,2),是△外接圓上的一點,且∠=45o,則點的坐標(biāo)是             
  

試題分析:由P點在第一象限,∠AOP=45°,可設(shè)P(a,a).過點C作CF∥OA,過點P作PE⊥OA于E交CF于F,用含a的代數(shù)式分別表示PF,CF,在△CFP中由勾股定理求出a的值,即可求得P點的坐標(biāo).
,
,
∵∠AOP=45°,
P點橫縱坐標(biāo)相等,可設(shè)為a.
∵∠AOB=90°,
∴AB是直徑,
∴Rt△AOB外接圓的圓心為AB中點,坐標(biāo)C(,1),
P點在圓上,P點到圓心的距離為圓的半徑2.
過點C作CF∥OA,過點P作PE⊥OA于E交CF于F,

∴∠CFP=90°,
∴PF=a-1,CF=a-,PC=2,
,舍去不合適的根,
可得,
則P點坐標(biāo)為,
故答案為
點評:解答本題的根據(jù)是掌握好圓周角定理:直徑所對圓心角是直角。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,且AD∥OC,若弧AD的度數(shù)為80°,求弧CD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙O的半徑為2,點P為⊙O外一點,OP長為3,那么以P為圓心且與⊙O相切的圓的半徑為      。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:

(1) 請在圖中確定該圓弧所在圓心D點的位置,D點坐標(biāo)為________;
(2) 連接AD、CD,求⊙D的半徑(結(jié)果保留根號)及扇形ADC的圓心角度數(shù);
(3) 若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑 (結(jié)果保留根號).                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)系x0y中,已知A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P共有(     )個
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,C是以AB為直徑的⊙O上一點,過O作OE⊥AC于點E,過點A作⊙O的切線交OE的延長線于點F,連接CF并延長交BA的延長線于點P.

(1)求證:PC是⊙O的切線.
(2)若AF=1,OA=,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正三角形的高、外接圓半徑、邊心距之比為(        )
A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB⊙O的直徑,弦CD⊥AB,垂足為E,連AC、BC,若∠BAC=30°,CD=6cm,

(1)求∠BCD度數(shù);
(2)求⊙O的直徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將三角板的直角頂點放在⊙O的圓心上,兩條直角邊分別交⊙O于A、B兩點,點P在優(yōu)弧AB上,且與點A、B不重合,連結(jié)PA、PB.則∠APB的大小為       °.
                                                    

查看答案和解析>>

同步練習(xí)冊答案