【題目】如圖1,已知ABACD為∠BAC的角平分線上面一點,連接BDCD;如圖2,已知ABAC,DE為∠BAC的角平分線上面兩點,連接BDCD、BE、CE;如圖3,已知ABACD、EF為∠BAC的角平分線上面三點,連接CDBE、CE、BF、CF;,依次規(guī)律,第200個圖形中有全等三角形的對數(shù)是(

A.200B.399C.603D.20100

【答案】D

【解析】

先根據(jù)圖形判定出各圖中全等三角形的個數(shù),然后找到規(guī)律進行求解.

解:第一個圖形中全等三角形有×2×11對全等三角形;

第二個圖形中全等三角形有×3×23對全等三角形;

第三個圖形中全等三角形有×4×36對全等三角形;

則第n個圖形中全等三角形有×(n+1)×n對全等三角形

故第200個圖形有×201×20020100對全等三角形.

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩名同學(xué)在同一個學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車,某天,A,B兩名同學(xué)同時從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時間(min)之間的函數(shù)關(guān)系圖象,B表示B同學(xué)離家的路程B(m)與行走時間(min)之間的函數(shù)關(guān)系圖象.

(1)A,B兩名同學(xué)的家相距________m.

(2)B同學(xué)走了一段路后,自行車發(fā)生故障,進行修理,修理自行車所用的時間是 _____min.

(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.

(4)求出A同學(xué)離B同學(xué)家的路程A與時間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,AB的垂直平分線DE交AC于D,垂足為E,若A=30°,CD=3.

(1)求BDC的度數(shù).

(2)求AC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,把△ABC 紙片沿 DE 折疊,使點 A 落在四邊形 BCED 的內(nèi)部點 A′的位置,試說明 2∠A=∠1+∠2;

(2)如圖②,若把△ABC 紙片沿 DE 折疊,使點 A 落在四邊形 BCED 的外部點A′的位置,寫出∠A 與∠1、∠2 之間的等量關(guān)系(無需說明理由);

(3)如圖③,若把四邊形 ABCD 沿 EF 折疊,使點 A、D 落在四邊形BCFE 的內(nèi)部點 A′、D′的位置,請你探索此時∠A、∠D、∠1 與∠2 之間的數(shù)量關(guān)系,寫出你發(fā)現(xiàn)的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算張老師在黑板上寫了三個算式,希望同學(xué)們認真觀察,發(fā)現(xiàn)規(guī)律

請你結(jié)合這些算式,解答下列問題:

(1)請你再寫出另外兩個符合上述規(guī)律的算式;

(2)驗證規(guī)律:設(shè)兩個連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

(3)拓展延伸:兩個連續(xù)偶數(shù)的平方差是8的倍數(shù),這個結(jié)論正確嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A',點B'、C'分別是BC的對應(yīng)點.

1)請畫出平移后的△A'B'C';

2)若連接AA',CC',則這兩條線段之間的關(guān)系是    

3)作直線MN,將△ABC分成兩個面積相等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:2221=2×211×21=2(  )

 2322=    =2(  ),

 2423=    =2(  ),

……

1)請仔細觀察,寫出第4個等式;

2)請你找規(guī)律,寫出第n個等式;

3)計算:21+22+23++2201922020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2中,點C為線段AB上一點,△ACM△CBN都是等邊三角形.

(1) 如圖1,線段AN與線段BM是否相等?證明你的結(jié)論;

(2) 如圖2,ANMC交于點E,BMCN交于點F,探究△CEF的形狀,并證明你的結(jié)論.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=B=90度,EAB上一點,且AE=BC,∠1=2

1RtADERtBEC全等嗎?請說明理由;

2)證明:ABADBC;

3CDE是不是直角三角形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案