【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設運動的時間為ts(0<t<4).

(1)求證:AF∥CE;

(2)當t為何值時,四邊形EHFG為菱形;

(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.

【答案】(1)證明見解析;(2)t=1,(3)不存在某個時刻t,使四邊形EHFG為矩形.

【解析】

(1)根據(jù)菱形的性質得到∠B=D,AD=BC,ABDC,推出ADF≌△CBE,根據(jù)全等三角形的性質得到∠DFA=BEC,根據(jù)平行線的判定定理即可得到結論;
(2)過DDMABM,連接GH,EF,推出四邊形AECF是平行四邊形,根據(jù)菱形的判定定理即可得到四邊形EGFH是菱形,證得四邊形DMEF是矩形,于是得到ME=DF=t列方程即可得到結論;
(3)不存在,假設存在某個時刻t,使四邊形EHFG為矩形,根據(jù)矩形的性質列方程即可得到結果.

(1)證明:∵動點E、F同時運動且速度相等,

DF=BE,

∵四邊形ABCD是菱形,

∴∠B=D,AD=BC,ABDC,

ADFCBE中,

∴△ADF≌△CBE,

∴∠DFA=BEC,

ABDC,

∴∠DFA=FAB,

∴∠FAB=BEC,

AFCE;

(2)過DDMABM,連接GH,EF,

DF=BE=t,

AFCE,ABCD,

∴四邊形AECF是平行四邊形,

G、HAF、CE的中點,

GHAB,

∵四邊形EGFH是菱形,

GHEF,

EFAB,FEM=90°,

DMAB,

DMEF,

∴四邊形DMEF是矩形,

ME=DF=t,

AD=4,DAB=60°,DMAB,

BE=4﹣2﹣t=t,

t=1,

(3)不存在,假設存在某個時刻t,使四邊形EHFG為矩形,

∵四邊形EHFG為矩形,

EF=GH,

EF2=GH2,

解得t=0,0<t<4,

∴與原題設矛盾,

∴不存在某個時刻t,使四邊形EHFG為矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如下圖所示,直線y=-x+3與坐標軸分別交于點A,B,與直線y=x交于點C,線段OA上的點Q以每秒1個單位的速度從點O出發(fā)向點A作勻速運動,運動時間為t秒,連結CQ.

(1)求出點C的坐標;

(2)OQC是等腰直角三角形,則t的值為________;

(3)CQ平分OAC的面積,求直線CQ對應的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖,如圖所示,則說明∠AOB′=∠AOB的依據(jù)是全等三角形的_____相等.其全等的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用甲、乙兩種原料配制成某種飲料,已知這兩種原料的維生素含量C及購這兩種原料的價格如下表:

維生素C(單位/千克)

600

100

原料價格(元/千克)

8

4

現(xiàn)配制這種飲料10千克,要求至少含有4200單位的維生素C,并要求購買甲、乙兩種原料的費用不超過72.請問:既要符合要求又要成本最低,則購買甲種原料應該在什么范圍之內,最低成本是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3/個的某品牌粽子,根據(jù)市場預測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,一次函數(shù)的圖像與軸交于點A,與軸交于點B,點C是直線AB上一點,它的坐標為(,2),經(jīng)過點C作直線CD∥軸交軸于點D.

(1)求點C的坐標及線段AB的長;

(2)已知點P是直線CD上一點.

①若POC的面積是4,求點P的坐標;

②若POC是直角三角形,請直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)已知∠MAN=135°,正方形ABCD繞點A旋轉.

1)當正方形ABCD旋轉到∠MAN的外部(頂點A除外)時,AMAN分別與正方形ABCD的邊CB,CD的延長線交于點M,N,連接MN

如圖1,若BM=DN,則線段MNBM+DN之間的數(shù)量關系是 ;

如圖2,若BM≠DN,請判斷中的數(shù)量關系是否仍成立?若成立,請給予證明;若不成立,請說明理由;

2)如圖3,當正方形ABCD旋轉到∠MAN的內部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BM,MNDN的長度為三邊長的三角形是何種三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:在正方形ABCD的外側,作△ADE△DCF,連結AF、BE.特例探究:如圖,若△ADE△DCF均為等邊三角形,試判斷線段AFBE的數(shù)量關系和位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將長方形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖1);再沿過點E的直線折疊,使點D落在BE上的點D′處,折痕為EG(如圖2);再展平紙片(如圖3),則圖3中∠α的大小為()

A.30°B.25.5°C.20°D.22.5°

查看答案和解析>>

同步練習冊答案