【題目】如圖1,在△ABC中,點(diǎn)D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(shí)(如圖2),求∠CAD的度數(shù).
【答案】(1)證明見解析;(2)22.5°.
【解析】
試題分析:(1)連接AO,延長AO交⊙O于點(diǎn)E,則AE為⊙O的直徑,連接DE,由已知條件得出∠ABC=∠CAD,由圓周角定理得出∠ADE=90°,證出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出結(jié)論;
(2)由圓周角定理得出∠BAD=90°,由角的關(guān)系和已知條件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,即可得出結(jié)果.
試題解析:(1)連接AO,延長AO交⊙O于點(diǎn)E,則AE為⊙O的直徑,連接DE,如圖所示:
∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE為⊙O的直徑,∴∠ADE=90°,∴∠EAD=90°﹣∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°﹣∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切線;
(2)∵BD是⊙O的直徑,∴∠BAD=90°,∴∠ABC+∠ADB=90°,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一枚硬幣在桌面上快速旋轉(zhuǎn),給人的印象是一個(gè)球,這說明的數(shù)學(xué)原理是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場促銷活動中,商家準(zhǔn)備對某種進(jìn)價(jià)為600元、標(biāo)價(jià)為1200元的商品進(jìn)行打折銷售,但要保證利潤率不低于10%,則最低折扣是( )
A.5折
B.5.5折
C.6折
D.6.5折
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點(diǎn)H,AC的延長線與過點(diǎn)B的直線相交于點(diǎn)E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點(diǎn)F、G,若BGBA=48,F(xiàn)G=,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的標(biāo)價(jià)為200元,8折銷售仍賺40元,則商品進(jìn)價(jià)為( )元.
A.140
B.120
C.160
D.100
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過點(diǎn)D作AB的垂線交AC于E,過點(diǎn)C作∠ECP=∠AED,CP交DE的延長線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.
(1)求證:PC是⊙O的切線;
(2)若PC=3,PF=1,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com