【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于第一象限內(nèi)的P( ,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).
(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;
(2)寫(xiě)出點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)P'的坐標(biāo);
(3)求∠P'AO的正弦值.

【答案】
(1)解:∵點(diǎn)P在反比例函數(shù)的圖象上,

∴把點(diǎn)P( ,8)代入 可得:k2=4,

∴反比例函數(shù)的表達(dá)式為 ,

∴Q (4,1).

把P( ,8),Q (4,1)分別代入y=k1x+b中,

,

解得 ,

∴一次函數(shù)的表達(dá)式為y=﹣2x+9


(2)解:點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)P'的坐標(biāo)為( ,﹣8)
(3)解:過(guò)點(diǎn)P′作P′D⊥x軸,垂足為D.

∵P′( ,﹣8),

∴OD= ,P′D=8,

∵點(diǎn)A在y=﹣2x+9的圖象上,

∴點(diǎn)A( ,0),即OA= ,

∴DA=5,

∴P′A= ,

∴sin∠P′AD= ,

∴sin∠P′AO=


【解析】(1)根據(jù)P( ,8),可得反比例函數(shù)解析式,根據(jù)P( ,8),Q(4,1)兩點(diǎn)可得一次函數(shù)解析式;(2)根據(jù)中心對(duì)稱(chēng)的性質(zhì),可得點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)P'的坐標(biāo);(3)過(guò)點(diǎn)P′作P′D⊥x軸,垂足為D,構(gòu)造直角三角形,依據(jù)P'D以及AP'的長(zhǎng),即可得到∠P'AO的正弦值.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于A(﹣1,0)、B兩點(diǎn),與y軸交于點(diǎn)C(0,2),拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)D.

(1)求拋物線的解析式;
(2)求sin∠ABC的值;
(3)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(4)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí)線段EF最長(zhǎng)?求出此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育老師測(cè)量了自己任教的甲、乙兩班男生的身高,并制作了如下不完整的統(tǒng)計(jì)圖表.

身高分組

頻數(shù)

頻率

152≤x<155

3

0.06

155≤x<158

7

0.14

158≤x<161

m

0.28

161≤x<164

13

n

164≤x<167

9

0.18

167≤x<170

3

0.06

170≤x<173

1

0.02


根據(jù)以上統(tǒng)計(jì)圖表完成下列問(wèn)題:
(1)統(tǒng)計(jì)表中m= , n= , 并將頻數(shù)分布直方圖補(bǔ)充完整;
(2)在這次測(cè)量中兩班男生身高的中位數(shù)在:范圍內(nèi);
(3)在身高≥167cm的4人中,甲、乙兩班各有2人,現(xiàn)從4人中隨機(jī)推選2人補(bǔ)充到學(xué)校國(guó)旗護(hù)衛(wèi)隊(duì)中,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出這兩人都來(lái)自相同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)E是BC邊的中點(diǎn),DE與AC相交于點(diǎn)F,連接BF,下列結(jié)論:①SABF=SADF;②SCDF=4SCEF;③SADF=2SCEF;④SADF=2SCDF , 其中正確的是(
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2 ,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點(diǎn)B的坐標(biāo)為;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由;
(3)①求證: = ;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=(
A.2π
B. π
C. π
D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)一班開(kāi)展了“讀一本好書(shū)”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書(shū)籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了“小說(shuō)”“戲劇”“散文”“其他”四個(gè)類(lèi)型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類(lèi)別

頻數(shù)(人數(shù))

頻率

小說(shuō)

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

1


根據(jù)圖表提供的信息,解答下列問(wèn)題:
(1)八年級(jí)一班有多少名學(xué)生?
(2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類(lèi)所占的百分比;
(3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類(lèi),現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫(huà)樹(shù)狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則 的值為 的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一條長(zhǎng)為40cm的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于52cm2 , 那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?
(2)兩個(gè)正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案