【題目】如圖,點的直徑的延長線上,點上,且AC=CD,∠ACD=120°.

1)求證:的切線;

2)若的半徑為2,求圖中陰影部分的面積.

【答案】1)見解析

2)圖中陰影部分的面積為π.

【解析】

1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;

(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.

1)證明:連接OC

ACCD,∠ACD120°,

∴∠A=∠D30°

OAOC,

∴∠2=∠A30°

∴∠OCD=∠ACD-∠290°,

OCCD

CD是⊙O的切線;

2)解:∠1=∠2+∠A60°

S扇形BOC

RtOCD中,∠D30°,

OD2OC4,

CD

SRtOCDOC×CD×2×

∴圖中陰影部分的面積為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點邊上,點的延長線上, 的長為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時的長為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過A﹣1,0),B5,0),C0,)三點.

1)求拋物線的解析式;

2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;

3)點Mx軸上一動點,在拋物線上是否存在一點N,使以AC,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;

(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一次函數(shù)的圖象與反比例函數(shù))的圖象相交于A,B兩點(AB的右側(cè)).

1)當A42)時,求反比例函數(shù)的解析式及B點的坐標;

2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

3)當Aa,﹣2a+10),Bb,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BCy軸于點D.若,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,⊙O是△ABC的內(nèi)切圓,三個切點分別為D、EF,若BF2AF3,則△ABC的面積是

A.6B.7C.D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖①,在等邊三角形ABC內(nèi)有一點P,且PA2,PB=PC1,求∠BPC的度數(shù)和等邊三角形ABC的邊長.

李明同學的思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△PPB是等邊三角形,而△PPA又是直角三角形(由勾股定理的逆定理可證),可得∠APB °,所以∠BPC=∠APB °,還可證得△ABP是直角三角形,進而求出等邊三角形ABC的邊長為 ,問題得到解決.

1)根據(jù)李明同學的思路填空:∠APB °,∠BPC=∠APB °,等邊三角形ABC的邊長為

2)探究并解決下列問題:如圖③,在正方形ABCD內(nèi)有一點P,且PA,PB,PC1.求∠BPC的度數(shù)和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售智能機器人,售價每臺為10萬元,進價y與銷售量x的函數(shù)關(guān)系式如圖所示。

(1)x=10時,公司銷售機器人的總利潤為___萬元;

(2)10x30時,求出yx的函數(shù)關(guān)系式;

(3)問:銷售量為多少臺時,公司銷售機器人的總利潤為37.5萬元。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)yk0)的圖象交于AB兩點,過點Ax軸的垂線,垂足為M,△AOM面積為1

1)求反比例函數(shù)的解析式;并直接寫出不等式的解集.

2)在x軸上求一點P,使|PAPB|的值最大,并求出其最大值和P點坐標.

3)連接OB,求三角形AOB的面積.

查看答案和解析>>

同步練習冊答案