【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC,OA=3,OC=6,將△ABC沿對(duì)角線AC翻折,使點(diǎn)B落在點(diǎn)B′處,AB′與y軸交于點(diǎn)D,則點(diǎn)D的坐標(biāo)為

【答案】(0, ?)
【解析】解:由折疊的性質(zhì)可知,∠B′AC=∠BAC,
∵四邊形OABC為矩形,
∴OC∥AB,
∴∠BAC=∠DCA,
∴∠B′AC=∠DCA,
∴AD=CD,
設(shè)OD=x,則DC=6﹣x,在Rt△AOD中,由勾股定理得,
OA2+OD2=AD2 ,
即9+x2=(6﹣x)2
解得:x=,
∴點(diǎn)D的坐標(biāo)為:(0,-),
所以答案是:(0,﹣).
【考點(diǎn)精析】掌握翻折變換(折疊問(wèn)題)是解答本題的根本,需要知道折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)大學(xué)生創(chuàng)業(yè),政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應(yīng)運(yùn)而生.某市統(tǒng)計(jì)了該市2015年1﹣5月新注冊(cè)小型企業(yè)的數(shù)量,并將結(jié)果繪制成如圖兩種不完整的統(tǒng)計(jì)圖:
(1)某市2015年1﹣5月份新注冊(cè)小型企業(yè)一共家,請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整.
(2)該市2015年3月新注冊(cè)小型企業(yè)中,只有2家是養(yǎng)殖企業(yè),現(xiàn)從3月新注冊(cè)的小型企業(yè)中隨機(jī)抽取2家企業(yè)了解其經(jīng)營(yíng)情況.請(qǐng)以列表或畫樹狀圖的方法求出所抽取的2家企業(yè)恰好都是養(yǎng)殖企業(yè)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BD⊥CE.
(2)如圖2,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線上時(shí),探究AD、BD、CD三條線段之間的數(shù)量關(guān)系,寫出結(jié)論并說(shuō)明理由;(3)若BD=CD,直接寫出∠BAD的度數(shù).
(3)若BD=CD,直接寫出∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O(shè)為圓心,線段OC的長(zhǎng)為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過(guò)點(diǎn)C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】盤錦紅海灘景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對(duì)門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過(guò)10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.

(1)a=   ,b=  。
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到紅海灘景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,DG⊥AC于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)F.

(1)求證:直線FG是⊙O的切線;
(2)若AC=10,cosA=,求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊△ACD、等邊△ABE,EF⊥AB,垂足為F,連接DF,當(dāng) = 時(shí),四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三沙市一艘海監(jiān)船某天在黃巖島P附近海域由南向北巡航,某一時(shí)刻航行到A處,測(cè)得該島在北偏東30°方向,海監(jiān)船以20海里/時(shí)的速度繼續(xù)航行,2小時(shí)后到達(dá)B處,測(cè)得該島在北偏東75°方向,求此時(shí)海監(jiān)船與黃巖島P的距離BP的長(zhǎng).(參考數(shù)據(jù):≈1.414,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB,CD表示甲、乙兩幢居民樓的高,兩樓間的距離BD是60米.某人站在A處測(cè)得C點(diǎn)的俯角為37°,D點(diǎn)的俯角為48°(人的身高忽略不計(jì)),求乙樓的高度CD.(參考數(shù)據(jù):sin37°≈,tan37°≈,sin48°≈,tan48°≈

查看答案和解析>>

同步練習(xí)冊(cè)答案