【題目】如圖1,在Rt△ABC中,∠C=90°,AC=8,AB=10,D,E兩點(diǎn)分別是AC,CB上的點(diǎn),且CD=6,DE∥AB,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周,記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn)
①當(dāng)α=0°時(shí),= ;
②當(dāng)α=90°時(shí),= .
(2)拓展探究
請(qǐng)你猜想當(dāng)△CDE在旋轉(zhuǎn)的過程中,是否發(fā)生變化?根據(jù)圖2證明你的猜想.
(3)問題解決
在將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,當(dāng)AD=2時(shí),BE= ,此時(shí)α= .
【答案】(1)①;②;(2)猜想:的值不變,理由見解析;(3),60°或300°.
【解析】
(1)①利用勾股定理求出BC,再利用平行線分線段成比例定理求出EC即可解決問題.
②正確畫出圖形,求出AD,BE即可解決問題.
(2)猜想:的值不變.利用相似三角形的性質(zhì)即可解決問題.
(3)分兩種情形:當(dāng)AD在AC阿德右側(cè),當(dāng)AD在AC的左側(cè),分別求解即可.
解:(1)①如圖1中,當(dāng)α=0時(shí),
在Rt△ACB中,∵∠C=90°,AC=8,AB=10,
∴BC==6,
∵DE∥AB,
∴=,
∴=,
∴CE=,
∵DE∥AB,
∴=,
∴===.
②如圖1﹣1中,當(dāng)α=90°時(shí),易知AD=AB=10,BE===.
∴==.
故答案為,.
(2)猜想:的值不變.
理由:如圖2中,
∵旋轉(zhuǎn)過程中,△DCE∽△ACB,
∴∠ACB=∠DCE,=,
∴=,∠ACD=∠BCE,
∴△ACD∽△BCE,
∴==.
(3)如圖3﹣1中,作DH⊥AC于H.設(shè)CH=x.
∵DH2=AD2﹣AH2=CD2﹣CH2,
∴52﹣(8﹣x)2=62﹣x2,
解得x=6,
∴cos∠HCD==,
∴∠ACD=60°,
∵=,AD=2,
∴BE=,此時(shí)α=60°.
如圖3﹣2中,同法可得:∠DCH=60°,BE=,此時(shí)α=300°.
故答案為:,60°或300°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)y=ax2﹣6ax+9a+1與線段AB有交點(diǎn),且已知點(diǎn)A(0,1)與點(diǎn)B(2,3)的坐標(biāo),則a的取值范圍_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個(gè)結(jié)論:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的實(shí)數(shù));其中正確結(jié)論的個(gè)數(shù)為( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過點(diǎn)A;P是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),過點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長(zhǎng)線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造書香城市,截止2019年3月洛陽(yáng)市有17家河洛書苑書房對(duì)社會(huì)免費(fèi)開放.某書房為了解讀者閱讀的情況,隨機(jī)調(diào)查了部分讀者在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)圖表.
讀者借閱圖書的次數(shù)統(tǒng)計(jì)表
借閱圖書的次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)a= ,b= ;
(2)這組數(shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中的“4次”所對(duì)應(yīng)的圓心角的度數(shù);
(4)據(jù)統(tǒng)計(jì)該書房一周共有2000位不同的讀者,根據(jù)以上調(diào)查結(jié)果,請(qǐng)你計(jì)算出一周內(nèi)借閱圖書“4次及以上”的讀者人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),EF經(jīng)過點(diǎn)O分別交AD、BC于E、F兩點(diǎn),
(1)如圖1,求證:AE=CF;
(2)如圖2,若EF⊥BD,∠AEB=60°,請(qǐng)你直接寫出與DE(DE除外)相等的所有線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,⊙M的半徑為2,圓心M的坐標(biāo)為(3,4),點(diǎn)P是⊙M上的任意一點(diǎn),PA⊥PB,且PA、PB與x軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則AB的最小值為( 。
A. 3B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有紅、黃兩個(gè)盒子,紅盒子中裝有編號(hào)分別為1、2、3、5的四個(gè)紅球,黃盒子中裝有編號(hào)為1、2、3的三個(gè)黃球.甲、乙兩人玩摸球游戲,游戲規(guī)則為:甲從紅盒子中每次摸出一個(gè)小球,乙從黃盒子中每次摸出一個(gè)小球,若兩球編號(hào)之和為奇數(shù),則甲勝,否則乙勝.
(1)試用列表或畫樹狀圖的方法,求甲獲勝的概率;
(2)請(qǐng)問這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?若公平,請(qǐng)說明理由;若不公平,試改動(dòng)紅盒子中的一個(gè)小球的編號(hào),使游戲規(guī)則公平.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com