【題目】如圖,在平面直角坐標(biāo)系中A點(diǎn)的坐標(biāo)為(8,y),AB⊥x軸于點(diǎn)B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過(guò)AO的中點(diǎn)C,且與AB交于點(diǎn)D.
(1)求反比例函數(shù)解析式
(2)若函數(shù)y=3x與y=的圖象的另一支交于點(diǎn)M,求三角形OMB與四邊形OCDB的面積的比
【答案】
(1)
解:∵A點(diǎn)的坐標(biāo)為(8,y),
∴OB=8,
∵AB⊥x軸于點(diǎn)B,sin∠OAB=,
∴=,
∴OA=10,
由勾股定理得:AB==6,
∵點(diǎn)C是OA的中點(diǎn),且在第一象限內(nèi),
∴C(4,3),
∵點(diǎn)C在反比例函數(shù)y=的圖象上,
∴k=12,
∴反比例函數(shù)解析式為:y=;
(2)
解:將y=3x與y=聯(lián)立成方程組,得:
,
解得:,,
∵M(jìn)是直線與雙曲線另一支的交點(diǎn),
∴M(﹣2,﹣6),
∵點(diǎn)D在AB上,
∴點(diǎn)D的橫坐標(biāo)為8,
∵點(diǎn)D在反比例函數(shù)y=的圖象上,
∴點(diǎn)D的縱坐標(biāo)為,
∴D(8,),
∴BD=,
連接BC,如圖所示,
∵S△MOB=8|﹣6|=24,
S四邊形OCDB=S△OBC+S△BCD=83+4=15,
∴.
【解析】(1)先根據(jù)銳角三角函數(shù)的定義,求出OA的值,然后根據(jù)勾股定理求出AB的值,然后由C點(diǎn)是OA的中點(diǎn),求出C點(diǎn)的坐標(biāo),然后將C的坐標(biāo)代入反比例函數(shù)y=中,即可確定反比例函數(shù)解析式;
(2)先將y=3x與y=聯(lián)立成方程組,求出點(diǎn)M的坐標(biāo),然后求出點(diǎn)D的坐標(biāo),然后連接BC,分別求出△OMB的面積,△OBC的面積,△BCD的面積,進(jìn)而確定四邊形OCDB的面積,進(jìn)而可求三角形OMB與四邊形OCDB的面積的比.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,E是BC邊一點(diǎn),DE平分∠ADC,EF∥DC角AD邊于點(diǎn)F,連結(jié)BD.
(1)求證:四邊形EFCD是正方形;
(2)若BE=1,ED=2,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,經(jīng)過(guò)點(diǎn)O的直線AD于點(diǎn)E,交BC于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖2,連接AF、CE,當(dāng)AF⊥FC時(shí),在不添加輔助線的情況下,直接寫出等于的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行比賽的路程與時(shí)間的關(guān)系如圖所示.
(1)這是一場(chǎng)________米比賽;
(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;
(3)兩人第________秒在途中相遇,相遇時(shí)距終點(diǎn)________米;
(4)甲在前8秒的平均速度是多少?甲在整個(gè)賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個(gè)賽程的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O,A,B,C的坐標(biāo)分別為(0,0),(-1,2),(-3,3)和(-2,1).
(1)若圖中的各個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說(shuō)明一下變化.
(2)若圖中的各個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說(shuō)明一下變化.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人是NBA聯(lián)盟凱爾特人隊(duì)的兩位明星球員,兩人在前五個(gè)賽季的罰球
命中率如下表所示:
甲球員的命中率(%) | 87 | 86 | 83 | 85 | 79 |
乙球員的命中率(%) | 87 | 85 | 84 | 80 | 84 |
(1)分別求出甲,乙兩位球員在前五個(gè)賽季罰球的平均命中率;
(2)在某場(chǎng)比賽中,因?qū)Ψ角騿T技術(shù)犯規(guī)需要?jiǎng)P爾特人隊(duì)選派一名隊(duì)員進(jìn)行罰球,你認(rèn)為甲,乙兩位球員誰(shuí)來(lái)罰球更好?(請(qǐng)通過(guò)計(jì)算說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120得到 EDC,連接AD,BD.
則下列結(jié)論:
①AC=AD;
②BD AC;
③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是( )
A.O
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校機(jī)器人興趣小組在如圖①所示的矩形場(chǎng)地上開(kāi)展訓(xùn)練.機(jī)器人從點(diǎn)出發(fā),在矩形邊上沿著的方向勻速移動(dòng),到達(dá)點(diǎn)時(shí)停止移動(dòng).已知機(jī)器人的速度為個(gè)單位長(zhǎng)度/,移動(dòng)至拐角處調(diào)整方向需要(即在、處拐彎時(shí)分別用時(shí)).設(shè)機(jī)器人所用時(shí)間為時(shí),其所在位置用點(diǎn)表示,到對(duì)角線的距離(即垂線段的長(zhǎng))為個(gè)單位長(zhǎng)度,其中與的函數(shù)圖像如圖②所示.
(1)求、的長(zhǎng);
(2)如圖②,點(diǎn)、分別在線段、上,線段平行于橫軸,、的橫坐標(biāo)分別為、.設(shè)機(jī)器人用了到達(dá)點(diǎn)處,用了到達(dá)點(diǎn)處(見(jiàn)圖①).若,求、的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com