【題目】如圖,在中,直徑經(jīng)過弦的中點,點在上,的延長線交于于點,交過的直線于,,連接與交于點.
(1)求證:是的切線;
(2)若點是的中點,的半徑為3,,求的長.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)切線的判定定理得出∠1+∠BDO=90°,即可得出答案;
(2)利用已知得出∠3=∠2,∠4=∠C,再利用相似三角形的判定方法得出即可;根據(jù)已知得出OE的長,進而利用勾股定理得出ED,AD,BD的長,即可得出CD,利用相似三角形的性質(zhì)得出NB的長即可.
(1)證明:∵直徑經(jīng)過弦的中點,
∴,
∴.
∵,
∴,
∴,
∴是的切線.
(2)解:連接.
∵是直徑,
∴,
∴,
即,
∴,
∵,
∴;
∵的半徑為3,即,
在中,,
設(shè)OE=x,ED=x,
由勾股定理得;OE2+ED2=OD2
解得:,
由此可得:,
由勾股定理可得:
,
,
,
∵是直徑,,
∴由垂徑定理得:,
∵,
∴,
∵點是的中點,,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,為上一點,經(jīng)過點,與相交于點E,與交于點,連接.
(I).如圖,若,,求的長.
(II)如圖,平分,交于點,經(jīng)過點.
①求證:為的切線;
②若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點的拋物線一部分.下列說法不正確的是( )
A.25min~50min,王阿姨步行的路程為800m
B.線段CD的函數(shù)解析式為
C.5min~20min,王阿姨步行速度由慢到快
D.曲線段AB的函數(shù)解析式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在以“青春心向覺,建功新時代”為主題的校園文化藝術(shù)節(jié)期間,舉辦了合唱,群舞,書法,演講共四個項目的比賽,要求每位學(xué)生必須參加且僅參加一項,小紅隨機調(diào)查了部分學(xué)生的報名情況,并繪制了下列兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:
(1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計圖中“”部分的圓心角度數(shù)是多少?
(2)請將條形統(tǒng)計圖補充完整;
(3)若全校共有1800名學(xué)生,請估計該校報名參加書法和演講比賽的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要在一塊長52m,寬48m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路.下面分別是小亮和小穎的設(shè)計方案.
(1)求小亮設(shè)計方案中甬路的寬度x;
(2)求小穎設(shè)計方案中四塊綠地的總面積(友情提示:小穎設(shè)計方案中的與小亮設(shè)計方案中的取值相同)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是⊙的直徑,弦于點,點是⊙上一點,且,連接,,交于點.
(1)若,,求⊙的半徑;
(2)求證:為等腰三角形;
(3)連接并延長,交的延長線于點,過點作⊙的切線,交的延長線于點.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點,D為頂點,其中點B的坐標(biāo)為,點D的坐標(biāo)為.
(1)求該二次函數(shù)的表達式;
(2)點E是線段BD上的一點,過點E作x軸的垂線,垂足為F,且,求點E的坐標(biāo).
(3)試問在該二次函數(shù)圖象上是否存在點G,使得的面積是的面積的?若存在,求出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)圖象在探索函數(shù)的性質(zhì)中有非常重要的作用,下面我們就一類特殊的函數(shù)展開探索.畫函數(shù)的圖象,經(jīng)歷分析解析式、列表、描點、連線過程得到函數(shù)圖象如圖所示;經(jīng)歷同樣的過程畫函數(shù)和的圖象如圖所示.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣6 | ﹣4 | ﹣2 | 0 | ﹣2 | ﹣4 | ﹣6 | … |
(1)觀察發(fā)現(xiàn):三個函數(shù)的圖象都是由兩條射線組成的軸對稱圖形;三個函數(shù)解折式中絕對值前面的系數(shù)相同,則圖象的開口方向和形狀完全相同,只有最高點和對稱軸發(fā)生了變化.寫出點A,B的坐標(biāo)和函數(shù)的對稱軸.
(2)探索思考:平移函數(shù)的圖象可以得到函數(shù)和的圖象,分別寫出平移的方向和距離.
(3)拓展應(yīng)用:在所給的平面直角坐標(biāo)系內(nèi)畫出函數(shù)的圖象.若點和在該函數(shù)圖象上,且,比較,的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com