【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長.
【答案】解:(1)90°;(2)2
【解析】
試題(1)首先由等腰直角三角形的性質(zhì)求得∠BAD、∠BCD的度數(shù),然后由旋轉(zhuǎn)的性質(zhì)可求得∠BCE的度數(shù),故此可求得∠DCE的度數(shù);
(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的長,然后依據(jù)比例關(guān)系可得到CE和DC的長,最后依據(jù)勾股定理求解即可.
試題解析:(1)∵△ABCD為等腰直角三角形,
∴∠BAD=∠BCD=45°.
由旋轉(zhuǎn)的性質(zhì)可知∠BAD=∠BCE=45°.
∴∠DCE=∠BCE+∠BCA=45°+45°=90°.
(2)∵BA=BC,∠ABC=90°,
∴AC=.
∵CD=3AD,
∴AD=,DC=3.
由旋轉(zhuǎn)的性質(zhì)可知:AD=EC=.
∴DE=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(8,0),sin∠ABO=,拋物線經(jīng)過點O、A,且頂點在△AOB的外接圓上,則此拋物線的表達式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;②若﹣1≤x2≤4,則0≤y2≤5a;③若y2>y1, 則x2>4;④一元二次方程cx2+bx+a=0的兩個根為﹣1和其中正確結(jié)論的序號是( )
A.①④B.①②C.②③D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某種汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時間t(單位:s)的函數(shù)關(guān)系式為s=15t-at2,且t=1時,s=9.
(1)求s與t的函數(shù)關(guān)系式;
(2)該汽車剎車后到停下來前進了多遠?
(3)該汽車剎車后前進6m時行駛了多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】秋風送爽,學校組織同學們?nèi)ヮU和園秋游,昆明湖西堤六橋中的玉帶橋最是令人喜愛,如圖所示,玉帶橋的橋拱是拋物線形水面寬度AB=10m,橋拱最高點C到水面的距離為6m.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担髵佄锞的表達式;
(2)現(xiàn)有一艘游船高度是4.5m,寬度是4m,為了保證安全,船頂距離橋拱頂部至少0.5m,通過計算說明這艘游船能否安全通過玉帶橋.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過坐標原點O,與x軸交于另一點A,頂點為B.求:
(1)拋物線的解析式;
(2)△AOB的面積;
(3)要使二次函數(shù)的圖象過點(10,0),應(yīng)把圖象沿x軸向右平移 個單位
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,CA=CB=6,∠ACB=120°,點D在線段AB上運動(不與A、B重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAP與△CBQ,給出下列結(jié)論:
①CD=CP=CQ;②∠PCQ為定值;③△PCQ面積的最小值為;④當點D在AB的中點時,△PDQ是等邊三角形,其中正確結(jié)論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com