【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的是______.
【答案】①②③
【解析】
利用三角形全等,得到結(jié)論,利用排除法即可求解.
∵等邊△ABC和等邊△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴AD=BE①成立,
由(1)中的全等得∠CBE=∠DAC,
又∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE②成立,
由△CQB≌△CPA得AP=BQ③成立,
故答案為:①②③
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。
現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫坐標和縱坐標都是整數(shù)的點叫作整點,函數(shù)y=的圖象上的整點的個數(shù)是( )
A. 3個 B. 4個 C. 6個 D. 8個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個根,求m的值;
(2)以這個方程的兩個實數(shù)根作為△ABC中AB、AC(AB<AC)的邊長,當BC=時,△ABC是等腰三角形,求此時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com