【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=,半徑為2的⊙C,分別交AC,BC于點D,E,得到

(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.

【答案】
(1)

證明:過點C作CH⊥AB于H,如圖,

在Rt△ABC中,∵tanB==,

∴BC=2AC=

∴AB===5,

CHAB=ACBC,

∴CH==2,

∵⊙C的半徑為2,

∴CH為⊙C的半徑,

而CH⊥AB,

∴AB為⊙C的切線;


(2)

解:S陰影部分=SACB﹣S扇形CDE

=×2×5﹣

=5﹣π.


【解析】(1)過點C作CH⊥AB于H,如圖,先在Rt△ABC中,利用正切的定義計算出BC=2AC=2,再利用勾股定理計算出AB=5,接著利用面積法計算出CH=2,則可判斷CH為⊙C的半徑,然后根據(jù)切線的判定定理即可得到AB為⊙C的切線;
(2)根據(jù)三角形面積公式和扇形的面積公式,利用S陰影部分=SACB﹣S扇形CDE進行計算即可.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對切線的判定定理的理解,了解切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax2+bx與y=bx+a的圖象可能是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是(
A.經過直線外一點,有且僅有一條直線與一線與已知直線垂直
B.平分弦的直徑垂直于弦
C.對角線互相平分且垂直的四邊形是菱形
D.反比例函數(shù)y= ,當k<0時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是∠BAC的平分線,EF垂直平分AD交AB于E,交AC于F. 求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖邊長為1的正方形ABCD被兩條與邊平行的線段EF、GH分割為四個小矩形,EF與GH交于點P

(1)若AG=AE,證明:AF=AH;
(2)若矩形PFCH的面積,恰矩形AGPE面積的兩倍,試確定∠HAF的大;
(3)若矩形EPHD的面積為 ,求Rt△GBF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一些體積為1的小立方體恰好可以組成體積為1的大立方體,把所有這些小立方體一個接一個向上摞起來,大概有多高呢?以下選項中最接近這一高度的是(

A. 蓮花山望海觀音的高度 B. 滴水巖森林公園青蘿嶂高度

C. 廣州塔的高度 D. 國際航班飛行高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的內部,OM平分,ON平分

(1)如圖1,時,當OCOD的左側,求的度數(shù).

(2)如圖2,時,當OCOD的右側 ,請補全圖形,并求的度數(shù).

(3)如圖3,當,OCOD左側時,試用的代數(shù)式表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市準備將一批帳篷和食品送往扶貧區(qū).已知帳篷和食品共320件,且?guī)づ癖仁称范?/span>80件.

(1)直接寫出帳篷有   件,食品有   件;

(2)現(xiàn)計劃租用A、B兩種貨車共8輛,一次性將這批物資全部送到扶貧區(qū),已知兩種車可裝帳篷和食品的件數(shù)以及每輛貨車所需付運費情況如表,問:共有幾種租車的方案?最少運費是多少?

帳篷(件)

食品(件)

每輛需付運費(元)

A種貨車

40

10

780

B種貨車

20

20

700

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸相交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)連接BC,點P為拋物線上第一象限內一動點,當△BCP面積最大時,求點P的坐標;
(3)設點D是拋物線的對稱軸上的一點,在拋物線上是否存在點Q,使以點B,C,D,Q為頂點的四邊形為平行四邊形?若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案